( A, B )---2*n*2---( 1, 0 )( 0, 1 )
用网络分类A和B,让A是(0,1)(0,0),让B是(1,0)(0,0)。记为网络1020.AB的测试集均为(0,0)(0,1)(1,0)(1,1). 由训练集可知(0,1)应被分为A,(1,0)应被分为B。(0,0)(1,1)的分类有三种可能,或者都是对半分,分类准确率为0.25+0.25=0.5,0.25+0.25=0.5。或者有一个是对半分,分类准确率为0.25+0.25+0.125=0.625,0.25+0.125=0.375。或者都被分为A或B,分类准确率为0.25+0.25+0.25=0.75,0.25
所以这个网络峰值分类准确率只可能为0.5,0.5;0.625,0.375;0.75,0.25.这三种情况。寻找实现峰值的隐藏层节点数。
首先让n=2
0 |
1 |
1 |
0 |
1b |
1 |
|||
0 |
0 |
0 |
0 |
0 |
0 |
|||
1020 |
2 |
|||||||
f2[0] |
f2[1] |
迭代次数n |
p-ave |
1-0 |
0-1 |
δ |
耗时ms/次 |
耗时ms/199次 |
0.52257 |
0.47743 |
91936.1 |
0.5 |
0.61935 |
0.38065 |
9.00E-04 |
89.4523 |
17816 |
0.43729 |
0.56271 |
103144 |
0.5 |
0.60302 |
0.39698 |
8.00E-04 |
100.437 |
19987 |
0.53262 |
0.46738 |
117455 |
0.5 |
0.62186 |
0.37814 |
7.00E-04 |
111.623 |
22229 |
0.50753 |
0.49247 |
136592 |
0.5 |
0.6206 |
0.3794 |
6.00E-04 |
128.94 |
25659 |
0.46737 |
0.53263 |
163353 |
0.5 |
0.6093 |
0.3907 |
5.00E-04 |
154.095 |
30665 |
0 |
194 |
5 |
38.8 |
|||||||||||
11 |
92 |
107 |
0.85981 |
|||||||||||
199 |
||||||||||||||
A |
4 |
B |
A |
1 |
B |
|||||||||
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|||
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
|||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
|||
3 |
1 |
1 |
3 |
1 |
1 |
3 |
1 |
1 |
3 |
1 |
1 |
|||
A |
103 |
B |
A |
91 |
B |
|||||||||
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|||
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
|||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
|||
3 |
1 |
1 |
3 |
1 |
1 |
3 |
1 |
1 |
3 |
1 |
1 |
4 |
1 |
023 |
1 |
13 |
02 |
103 |
01 |
23 |
91 |
013 |
2 |
有4次1被分类为A,023被分为B。1次13被分为A,02被分为B。103次01被分为A,23被分为B。91次013被分为A,2被分为B。
00 |
194 |
5 |
38.8 |
|
11 |
92 |
107 |
0.85981 |
194次(0,0)被分为A,5次被分为B,比例为38.8.(1,1)接近被对半分。
再让n分别等于5,10,15,20,25,…,550,分别计算(0,0)(1,1)被分为A和B的比例。得到表格
A/B |
2 |
5 |
10 |
15 |
20 |
25 |
30 |
35 |
40 |
45 |
50 |
55 |
60 |
70 |
80 |
90 |
100 |
120 |
(0,0) |
38.8 |
1.0947 |
1.5513 |
2.4912 |
3.975 |
4.3784 |
3.975 |
3.523 |
4.528 |
5.419 |
4.237 |
7.292 |
6.37 |
8.045 |
6.37 |
6.37 |
9.474 |
9.474 |
(1,1) |
0.8598 |
0.8426 |
0.932 |
0.99 |
0.8952 |
0.951 |
0.809 |
0.97 |
1.073 |
1.187 |
1.341 |
1.187 |
1.01 |
1.095 |
0.913 |
1.031 |
1.163 |
1.095 |
A/B |
140 |
160 |
180 |
200 |
220 |
240 |
260 |
280 |
300 |
320 |
340 |
360 |
380 |
400 |
450 |
500 |
550 |
|
(0,0) |
7.2917 |
7.2917 |
9.4737 |
8.4762 |
5.6333 |
6.1071 |
5.219 |
4.528 |
4.237 |
3.975 |
2.827 |
2.827 |
2.98 |
2.902 |
2.373 |
3.422 |
1.223 |
|
(1,1) |
1.3976 |
1.6184 |
2.1587 |
1.6892 |
1.6892 |
2.2623 |
2.317 |
2.062 |
2.827 |
5.03 |
1.369 |
1.261 |
1.236 |
1.187 |
1.031 |
1.163 |
1.152 |
当n=2时(0,0)的分配比例出现峰值为38.8,此时(1,1)的比例为0.859.这组数据很接近0.625,0.375的比例。若不考虑n=2,(0,0)的比例峰值为n=120,为9.474.此时(1,1)的比例为1.095.当n大于180以后(0,0)的比例迅速下滑。
统计1-0位分类准确率
2 |
5 |
10 |
15 |
20 |
25 |
30 |
35 |
40 |
45 |
50 |
55 |
60 |
70 |
80 |
90 |
100 |
120 |
|
δ |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
9.00E-04 |
0.6193 |
0.5088 |
0.5251 |
0.5528 |
0.5691 |
0.5729 |
0.573 |
0.598 |
0.573 |
0.594 |
0.587 |
0.568 |
0.592 |
0.611 |
0.606 |
0.611 |
0.608 |
0.616 |
8.00E-04 |
0.603 |
0.4987 |
0.5302 |
0.544 |
0.5678 |
0.5842 |
0.598 |
0.588 |
0.587 |
0.597 |
0.602 |
0.599 |
0.59 |
0.598 |
0.621 |
0.612 |
0.592 |
0.613 |
7.00E-04 |
0.6219 |
0.5101 |
0.5364 |
0.5603 |
0.5678 |
0.5892 |
0.568 |
0.56 |
0.575 |
0.597 |
0.595 |
0.592 |
0.606 |
0.616 |
0.603 |
0.611 |
0.599 |
0.612 |
6.00E-04 |
0.6206 |
0.4975 |
0.5251 |
0.5389 |
0.5779 |
0.5842 |
0.578 |
0.59 |
0.585 |
0.584 |
0.588 |
0.58 |
0.593 |
0.582 |
0.597 |
0.592 |
0.604 |
0.592 |
5.00E-04 |
0.6093 |
0.495 |
0.5226 |
0.5528 |
0.5678 |
0.5754 |
0.562 |
0.568 |
0.584 |
0.597 |
0.595 |
0.606 |
0.592 |
0.603 |
0.585 |
0.593 |
0.611 |
0.607 |
140 |
160 |
180 |
200 |
220 |
240 |
260 |
280 |
300 |
320 |
340 |
360 |
380 |
400 |
450 |
500 |
550 |
||
δ |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
1-0 |
|
9.00E-04 |
0.6156 |
0.6093 |
0.6357 |
0.6231 |
0.6244 |
0.642 |
0.666 |
0.651 |
0.681 |
0.676 |
0.58 |
0.575 |
0.578 |
0.58 |
0.533 |
0.572 |
0.607 |
|
8.00E-04 |
0.6055 |
0.6294 |
0.6269 |
0.6131 |
0.6382 |
0.6482 |
0.655 |
0.636 |
0.667 |
0.682 |
0.592 |
0.601 |
0.572 |
0.589 |
0.539 |
0.578 |
0.557 |
|
7.00E-04 |
0.6219 |
0.6281 |
0.6407 |
0.6219 |
0.6281 |
0.6369 |
0.631 |
0.638 |
0.682 |
0.643 |
0.607 |
0.58 |
0.567 |
0.565 |
0.555 |
0.59 |
0.554 |
|
6.00E-04 |
0.6005 |
0.6231 |
0.603 |
0.6281 |
0.6219 |
0.6457 |
0.639 |
0.646 |
0.666 |
0.651 |
0.585 |
0.565 |
0.558 |
0.539 |
0.557 |
0.563 |
0.587 |
|
5.00E-04 |
0.6156 |
0.6244 |
0.647 |
0.6307 |
0.6193 |
0.6382 |
0.634 |
0.623 |
0.637 |
0.658 |
0.579 |
0.574 |
0.575 |
0.572 |
0.553 |
0.578 |
0.562 |
分类准确率的峰值出现在n=320.为65.8%。当n超过320以后分类准确率迅速下降。
统计迭代次数
2 |
5 |
10 |
15 |
20 |
25 |
30 |
35 |
40 |
45 |
50 |
55 |
60 |
70 |
80 |
90 |
100 |
120 |
|
δ |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
9.00E-04 |
91936 |
48767 |
33044 |
27967 |
25451 |
23789 |
22647 |
21876 |
21272 |
20743 |
20306 |
20001 |
19660 |
19266 |
18880 |
18596 |
18363 |
18002 |
8.00E-04 |
103144 |
53542 |
36770 |
30900 |
27975 |
26251 |
25150 |
24104 |
23420 |
22847 |
22405 |
21996 |
21728 |
21156 |
20746 |
20444 |
20172 |
19786 |
7.00E-04 |
117455 |
61460 |
41326 |
34623 |
31554 |
29404 |
28052 |
26956 |
26161 |
25509 |
25014 |
24514 |
24155 |
23609 |
23167 |
22838 |
22533 |
22073 |
6.00E-04 |
136592 |
70205 |
47383 |
39937 |
35874 |
33358 |
31835 |
30683 |
29766 |
29064 |
28418 |
27950 |
27439 |
26836 |
26261 |
25894 |
25587 |
25029 |
5.00E-04 |
163353 |
85621 |
55521 |
46584 |
41867 |
39242 |
37155 |
35697 |
34705 |
33799 |
33233 |
32602 |
32067 |
31302 |
30684 |
30180 |
29739 |
29155 |
140 |
160 |
180 |
200 |
220 |
240 |
260 |
280 |
300 |
320 |
340 |
360 |
380 |
400 |
450 |
500 |
550 |
||
δ |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
迭代次数n |
|
9.00E-04 |
17752 |
17542 |
17373 |
17240 |
17128 |
17032 |
16941 |
16867 |
16793 |
16735 |
16408 |
15198 |
14772 |
14543 |
13536 |
11617 |
11056 |
|
8.00E-04 |
19515 |
19279 |
19102 |
18948 |
18828 |
18718 |
18626 |
18533 |
18466 |
18394 |
19811 |
19667 |
16743 |
16355 |
12795 |
13289 |
13065 |
|
7.00E-04 |
21742 |
21486 |
21297 |
21123 |
20982 |
20870 |
20746 |
20659 |
20578 |
20499 |
21617 |
20194 |
16790 |
18063 |
15423 |
15277 |
14511 |
|
6.00E-04 |
24671 |
24376 |
24155 |
23951 |
23792 |
23671 |
23539 |
23433 |
23327 |
23252 |
24090 |
23078 |
20626 |
20847 |
16603 |
19349 |
14949 |
|
5.00E-04 |
28729 |
28357 |
28083 |
27831 |
27660 |
27501 |
27362 |
27229 |
27114 |
27015 |
26152 |
26161 |
23855 |
21500 |
20679 |
19402 |
19319 |
随着隐藏层节点数的增加,迭代次数一直在下降,当n=25的时候下降速度趋于平缓。n大于320后出现明显波动
统计迭代次数的标准差
2 |
5 |
10 |
15 |
20 |
25 |
30 |
35 |
40 |
45 |
50 |
55 |
60 |
70 |
80 |
90 |
100 |
120 |
140 |
|
δ |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
9.00E-04 |
354.45 |
5761.8 |
2396.7 |
1563.6 |
1203.5 |
865.62 |
652.8 |
595.5 |
543.8 |
482.9 |
436.7 |
388.7 |
344.9 |
294.9 |
254.2 |
204.8 |
199.1 |
160.6 |
139.3 |
8.00E-04 |
450.23 |
5055.5 |
2725 |
1831.7 |
1233.2 |
979.5 |
878.5 |
607.5 |
576.7 |
507.5 |
491.7 |
410.2 |
433.8 |
334.7 |
269.9 |
226.4 |
203.7 |
165.4 |
148.1 |
7.00E-04 |
373.85 |
6798.9 |
2834.2 |
1791.5 |
1331.4 |
1059.1 |
926.3 |
799.6 |
694.2 |
606.5 |
540.7 |
451.3 |
438.8 |
355.7 |
313.2 |
271 |
254.7 |
191.6 |
158.2 |
6.00E-04 |
293.19 |
6612.8 |
3154 |
2094.9 |
1653.9 |
1237.7 |
985.4 |
885.6 |
767.2 |
711.3 |
577.2 |
524.8 |
417 |
446.2 |
349.3 |
316.4 |
282.4 |
219.6 |
192.6 |
5.00E-04 |
348.82 |
11378 |
3657.1 |
2522 |
2073.1 |
1451 |
1223 |
980.5 |
895.1 |
770.8 |
658.7 |
681.7 |
608.2 |
505.8 |
408 |
379.9 |
332.5 |
255.9 |
235.1 |
160 |
180 |
200 |
220 |
240 |
260 |
280 |
300 |
320 |
340 |
360 |
380 |
400 |
450 |
500 |
550 |
||||
δ |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
迭代次数标准差 |
|||
9.00E-04 |
114.57 |
94.107 |
93.394 |
78.296 |
66.341 |
58.815 |
57.46 |
48.07 |
45.48 |
8952 |
10584 |
11000 |
11023 |
10444 |
9766 |
8954 |
|||
8.00E-04 |
127.66 |
104.17 |
99.607 |
84.831 |
79.861 |
69.937 |
63.44 |
54.88 |
48.68 |
9855 |
11528 |
12172 |
12156 |
11536 |
10925 |
9825 |
|||
7.00E-04 |
148.94 |
126.5 |
108.75 |
90.978 |
89.835 |
78.104 |
72.31 |
65.42 |
56.57 |
11132 |
13151 |
13648 |
13713 |
13071 |
12137 |
11344 |
|||
6.00E-04 |
162.68 |
130.62 |
130.22 |
110.21 |
116.46 |
92.433 |
84.61 |
69.46 |
65.01 |
12761 |
15030 |
15673 |
15651 |
15028 |
13604 |
13076 |
|||
5.00E-04 |
189.47 |
180.57 |
144.75 |
131.57 |
119.62 |
116.82 |
86.92 |
91.66 |
70.08 |
15047 |
17715 |
18426 |
18400 |
17530 |
16376 |
15252 |
迭代次数的标准差有一个峰一个谷。n=5时为峰,n=320时为谷。
当n>320以后网络性能变得不再稳定,不统计,则这个网络的的收敛过程被一个峰值一个谷值分成3部分,2-5寻求平衡,5-320平衡,n>320,超出性能极限。
这个网络1-0位置的最大分类准确率为n=320时的65.8%。这个值更接近63.5%,所以有理由认为这个网络的峰值分类准确率就是63.5%,(0,0)时序优先,先到全得,(1,1)被对半分,但是当n=320时(0,0)的比例为3.97,(1,1)的比例为5.03,表明有过多的(1,1)被分为A这与(1,1)被对半分的假设相差巨大。
所以网络的最优节点数应该是120个或2个。此时网络的分类行为与训练集内在的分类逻辑最接近。