tensorflow基础知识总结+线性回归实战

目录

  • 一、Tensorflow介绍
    • 1.2 图与tensorBoard
      • 1) 数据序列化-events文件
      • 2) 启动TensorBoard
    • 2.op
      • 2.1 修改张量的命名
    • 3.会话
      • 3.1 __ init __
      • 3.2 会话中的run()
    • 4 张量
      • 4.1 张量的类型
      • 4.2 张量形状的变换
      • 4.3 形状改变
      • 4.4 张量的数学运算
      • 4.5 变量OP
  • 二、利用TensorFlow实现线性回归案例
    • 2.1 基础代码
    • 2.2 命名空间
    • 2.3 收集变量
    • 2.4 模型保存与加载
    • 2.4 命令行参数

一、Tensorflow介绍

1.2 图与tensorBoard

实现程序可视化的需要两步:

1) 数据序列化-events文件

import tensorflow as tf
a = tf.constant(20)
b = tf.constant(22)
c = tf.add(a, b)

# 获取默认图
g = tf.get_default_graph()
print("图", g)

with tf.Session() as sess:
    # 1、写入到events文件中
    file_writer = tf.summary.FileWriter("./temp/summary", graph=sess.graph)
    sum_t = sess.run(c)
    print(sum_t)

2) 启动TensorBoard

tensorboard --logdir="./ai/temp/summary/" --host=127.0.0.1  # 在cmd中输入自己的events文件所在目录

> TensorBoard 1.12.2 at http://127.0.0.1:6006 (Press CTRL+C to quit)

在浏览器中输入: http://127.0.0.1:6006,即可打开TensorBoard

tensorflow基础知识总结+线性回归实战_第1张图片

2.op

tensorflow基础知识总结+线性回归实战_第2张图片
tensorflow基础知识总结+线性回归实战_第3张图片
tensorflow基础知识总结+线性回归实战_第4张图片

2.1 修改张量的命名

a = tf.constant(20, name="a")
b = tf.constant(20, name="b")

tensorflow基础知识总结+线性回归实战_第5张图片

3.会话

tensorflow基础知识总结+线性回归实战_第6张图片

3.1 __ init __

tensorflow基础知识总结+线性回归实战_第7张图片
在这里插入图片描述

import tensorflow as tf
a = tf.constant(20, name="a")
b = tf.constant(22, name="b")
d = tf.constant(22.2)
c = tf.add(a, b)

# 获取默认图
g = tf.get_default_graph()
print("图", g)
print("a:", a)
print("d:", d)

with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) as sess:
    # 1、写入到events文件中
    file_writer = tf.summary.FileWriter("./temp/summary", graph=sess.graph)
    sum_t = sess.run(c)
    print(sum_t)

><tensorflow.python.framework.ops.Graph object at 0x000001D2D0B02470>
a: Tensor("a:0", shape=(), dtype=int32)
d: Tensor("Const:0", shape=(), dtype=float32)

Device mapping: no known devices.
Add: (Add): /job:localhost/replica:0/task:0/device:CPU:0
a: (Const): /job:localhost/replica:0/task:0/device:CPU:0
b: (Const): /job:localhost/replica:0/task:0/device:CPU:0
Const: (Const): /job:localhost/replica:0/task:0/device:CPU:0
42

3.2 会话中的run()

tensorflow基础知识总结+线性回归实战_第8张图片

import tensorflow as tf
a = tf.constant(20, name="a")
b = tf.constant(22, name="b")
d = tf.constant(22.2)
c = tf.add(a, b)


with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) as sess:
    # 1、写入到events文件中
    file_writer = tf.summary.FileWriter("./temp/summary", graph=sess.graph)
    a, b, c = sess.run([a, b, c])
    print(a, b, c)

feed_dict:能够在运行时控制变量的赋值

import tensorflow as tf


# 定义placeholder
plat_a = tf.placeholder(dtype=tf.float32)
plat_b = tf.placeholder(dtype=tf.float32)
plat_add = tf.add(plat_a, plat_b)

with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) as sess:
    # 1、写入到events文件中
    file_writer = tf.summary.FileWriter("./temp/summary", graph=sess.graph)
    ret = sess.run(plat_add, feed_dict={plat_a: 5.0, plat_b: 6.0})
    print(ret)

4 张量

TensorFlow的张量就是一个n维数组,类型为tf.Tensor。Tensor具有两个重要属性:

  • type:数据类型
  • shape:形状(阶)

4.1 张量的类型

tensorflow基础知识总结+线性回归实战_第9张图片
tensorflow基础知识总结+线性回归实战_第10张图片

 ones = tf.ones([3, 4])
 print(ones.eval())

在这里插入图片描述

在这里插入图片描述

4.2 张量形状的变换

tensorflow基础知识总结+线性回归实战_第11张图片

4.3 形状改变

TensorFlow的张量具有两种形状变换,动态形状和静态形状:

  • tf.reshape
  • tf.set_shape
    tensorflow基础知识总结+线性回归实战_第12张图片
    静态形状的设置:
# 定义placeholder
plat_a = tf.placeholder(dtype=tf.float32)
plat_b = tf.placeholder(dtype=tf.float32)
plat_add = tf.add(plat_a, plat_b)

plat_c = tf.placeholder(dtype=tf.float32, shape=[None, None])
print(plat_c.shape)
plat_c.set_shape([5, 6])
print("c.shape:", plat_c.shape)
plat_c.set_shape([4, 3])  # 不能再次设置静态形状,否则会报错!!!,也不能跨阶数修改!!!!
print("c.shape:", plat_c.shape)

动态形状的设置:会生成一个新的张量值

plat_c = tf.placeholder(dtype=tf.float32, shape=[None, None])
print(plat_c.shape)
c_shape = tf.reshape(plat_c, [12, 12])
c_shape = tf.reshape(c_shape, [2, 12, 6])
print("c.shape:", c_shape.get_shape())

4.4 张量的数学运算

tensorflow基础知识总结+线性回归实战_第13张图片

4.5 变量OP

tensorflow基础知识总结+线性回归实战_第14张图片
tensorflow基础知识总结+线性回归实战_第15张图片

tensorflow基础知识总结+线性回归实战_第16张图片
tensorflow基础知识总结+线性回归实战_第17张图片

二、利用TensorFlow实现线性回归案例

2.1 基础代码

import tensorflow as tf


# 1.准备数据
X = tf.random_normal(shape=(100, 1), mean=2, stddev=2)
y_true = tf.matmul(X, [[0.8]]) + [[0.7]]

# 2.构建模型
weights = tf.Variable(initial_value=tf.random_normal((1, 1)))
bias = tf.Variable(initial_value=tf.random_normal((1, 1)))
y_predict = tf.matmul(X, weights) + bias

# 3. 确定损失函数
error = tf.reduce_mean(tf.square(y_predict-y_true))

# 4.梯度下降优化损失
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(error)


# 初始化变量
init = tf.global_variables_initializer()

# 5.训练
with tf.Session() as sess:
    sess.run(init)
    print("随机初始化的权重%f, 偏置为%f" % (weights.eval(), bias.eval()))
    # 训练模型
    for i in range(1000):
        sess.run(optimizer)
        print("第%d步的误差为%f, 权重为%f, 偏置为%f" % (i, error.eval(), weights.eval(), bias.eval()))

2.2 命名空间

添加模块的命名

import tensorflow as tf


# 1.准备数据
with tf.variable_scope("original_data"):
    X = tf.random_normal(shape=(100, 1), mean=2, stddev=2, name="original_data_x")
    y_true = tf.matmul(X, [[0.8]]) + [[0.7]]

# 2.构建模型
with tf.variable_scope("linear_model"):
    weights = tf.Variable(initial_value=tf.random_normal((1, 1)), name="w")
    bias = tf.Variable(initial_value=tf.random_normal((1, 1)), name="b")
    y_predict = tf.matmul(X, weights) + bias

# 3. 确定损失函数
with tf.variable_scope("loss"):
    error = tf.reduce_mean(tf.square(y_predict-y_true))

# 4.梯度下降优化损失
with tf.variable_scope("optimizer"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(error)


# 初始化变量
init = tf.global_variables_initializer()

# 5.训练
with tf.Session() as sess:
    # 5.1运行初始化变量
    sess.run(init)
    print("随机初始化的权重%f, 偏置为%f" % (weights.eval(), bias.eval()))
    
    # 5.2 创建事件文件
    file_writer = tf.summary.FileWriter(logdir="./temp/summary/", graph=sess.graph)

    # 5.3训练模型
    for i in range(1000):
        sess.run(optimizer)
        print("第%d步的误差为%f, 权重为%f, 偏置为%f" % (i, error.eval(), weights.eval(), bias.eval()))

tensorflow基础知识总结+线性回归实战_第18张图片

2.3 收集变量

tensorflow基础知识总结+线性回归实战_第19张图片

import tensorflow as tf


# 1.准备数据
with tf.variable_scope("original_data"):
    X = tf.random_normal(shape=(100, 1), mean=2, stddev=2, name="original_data_x")
    y_true = tf.matmul(X, [[0.8]]) + [[0.7]]

# 2.构建模型
with tf.variable_scope("linear_model"):
    weights = tf.Variable(initial_value=tf.random_normal((1, 1)), name="w")
    bias = tf.Variable(initial_value=tf.random_normal((1, 1)), name="b")
    y_predict = tf.matmul(X, weights) + bias

# 3. 确定损失函数
with tf.variable_scope("loss"):
    error = tf.reduce_mean(tf.square(y_predict-y_true))

# 4.梯度下降优化损失
with tf.variable_scope("optimizer"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(error)

# 11.手机观察的变量
tf.summary.scalar("losses", error)
tf.summary.histogram("weight", weights)
tf.summary.histogram("biases", bias)

# 22.合并收集的张量
merge = tf.summary.merge_all()

# 初始化变量
init = tf.global_variables_initializer()

# 5.训练
with tf.Session() as sess:
    # 5.1运行初始化变量
    sess.run(init)
    print("随机初始化的权重%f, 偏置为%f" % (weights.eval(), bias.eval()))

    # 5.2 创建事件文件
    file_writer = tf.summary.FileWriter(logdir="./temp/summary/", graph=sess.graph)

    # 5.3训练模型
    for i in range(1000):
        sess.run(optimizer)
        print("第%d步的误差为%f, 权重为%f, 偏置为%f" % (i, error.eval(), weights.eval(), bias.eval()))

        # 写入收集的变量
        summary = sess.run(merge)
        file_writer.add_summary(summary, i)

tensorflow基础知识总结+线性回归实战_第20张图片
tensorflow基础知识总结+线性回归实战_第21张图片
tensorflow基础知识总结+线性回归实战_第22张图片

2.4 模型保存与加载

tensorflow基础知识总结+线性回归实战_第23张图片

保存的文件格式为ckpt
saver = tf.train.Saver()
saver.save(sess, "./temp/ckpt/linearregression")
saver.restore(sess, "./temp/ckpt/linearregression")

保存代码

import tensorflow as tf


# 1.准备数据
with tf.variable_scope("original_data"):
    X = tf.random_normal(shape=(100, 1), mean=2, stddev=2, name="original_data_x")
    y_true = tf.matmul(X, [[0.8]]) + [[0.7]]

# 2.构建模型
with tf.variable_scope("linear_model"):
    weights = tf.Variable(initial_value=tf.random_normal((1, 1)), name="w")
    bias = tf.Variable(initial_value=tf.random_normal((1, 1)), name="b")
    y_predict = tf.matmul(X, weights) + bias

# 3. 确定损失函数
with tf.variable_scope("loss"):
    error = tf.reduce_mean(tf.square(y_predict-y_true))

# 4.梯度下降优化损失
with tf.variable_scope("optimizer"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(error)

# 11.手机观察的变量
tf.summary.scalar("losses", error)
tf.summary.histogram("weight", weights)
tf.summary.histogram("biases", bias)

# 22.合并收集的张量
merge = tf.summary.merge_all()

# 初始化变量
init = tf.global_variables_initializer()

# 创建saver
saver = tf.train.Saver()

# 5.训练
with tf.Session() as sess:
    # 5.1运行初始化变量
    sess.run(init)
    print("随机初始化的权重%f, 偏置为%f" % (weights.eval(), bias.eval()))

    # 5.2 创建事件文件
    file_writer = tf.summary.FileWriter(logdir="./temp/summary/", graph=sess.graph)

    # 5.3训练模型
    for i in range(1000):
        sess.run(optimizer)
        print("第%d步的误差为%f, 权重为%f, 偏置为%f" % (i, error.eval(), weights.eval(), bias.eval()))

        # 写入收集的变量
        summary = sess.run(merge)
        file_writer.add_summary(summary, i)

        saver.save(sess, "./temp/ckpt/linearregression")

读取

import tensorflow as tf


# 1.准备数据
with tf.variable_scope("original_data"):
    X = tf.random_normal(shape=(100, 1), mean=2, stddev=2, name="original_data_x")
    y_true = tf.matmul(X, [[0.8]]) + [[0.7]]

# 2.构建模型
with tf.variable_scope("linear_model"):
    weights = tf.Variable(initial_value=tf.random_normal((1, 1)), name="w")
    bias = tf.Variable(initial_value=tf.random_normal((1, 1)), name="b")
    y_predict = tf.matmul(X, weights) + bias

# 3. 确定损失函数
with tf.variable_scope("loss"):
    error = tf.reduce_mean(tf.square(y_predict-y_true))

# 4.梯度下降优化损失
with tf.variable_scope("optimizer"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(error)

# 11.手机观察的变量
tf.summary.scalar("losses", error)
tf.summary.histogram("weight", weights)
tf.summary.histogram("biases", bias)

# 22.合并收集的张量
merge = tf.summary.merge_all()

# 初始化变量
init = tf.global_variables_initializer()

# 创建saver
saver = tf.train.Saver()

# 5.训练
with tf.Session() as sess:
    # 5.1运行初始化变量
    sess.run(init)
    print("随机初始化的权重%f, 偏置为%f" % (weights.eval(), bias.eval()))

    # 5.2 创建事件文件
    file_writer = tf.summary.FileWriter(logdir="./temp/summary/", graph=sess.graph)

    saver.restore(sess, "./temp/ckpt/linearregression")
    print(weights.eval(), bias.eval())
    # # 5.3训练模型
    # for i in range(1000):
    #     sess.run(optimizer)
    #     print("第%d步的误差为%f, 权重为%f, 偏置为%f" % (i, error.eval(), weights.eval(), bias.eval()))
    #
    #     # 写入收集的变量
    #     summary = sess.run(merge)
    #     file_writer.add_summary(summary, i)
    #
    #     saver.save(sess, "./temp/ckpt/linearregression")

2.4 命令行参数

tensorflow基础知识总结+线性回归实战_第24张图片

import tensorflow as tf


# 1.准备数据
with tf.variable_scope("original_data"):
    X = tf.random_normal(shape=(100, 1), mean=2, stddev=2, name="original_data_x")
    y_true = tf.matmul(X, [[0.8]]) + [[0.7]]

# 2.构建模型
with tf.variable_scope("linear_model"):
    weights = tf.Variable(initial_value=tf.random_normal((1, 1)), name="w")
    bias = tf.Variable(initial_value=tf.random_normal((1, 1)), name="b")
    y_predict = tf.matmul(X, weights) + bias

# 3. 确定损失函数
with tf.variable_scope("loss"):
    error = tf.reduce_mean(tf.square(y_predict-y_true))

# 4.梯度下降优化损失
with tf.variable_scope("optimizer"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(error)

# 11.手机观察的变量
tf.summary.scalar("losses", error)
tf.summary.histogram("weight", weights)
tf.summary.histogram("biases", bias)

# 22.合并收集的张量
merge = tf.summary.merge_all()

# 初始化变量
init = tf.global_variables_initializer()

# 创建saver
saver = tf.train.Saver()

# ####################  定义命令行参数
tf.app.flags.DEFINE_integer("max_step", 1000, "train_ step number")
FLAGS = tf.app.flags.FLAGS

# 5.训练
with tf.Session() as sess:
    # 5.1运行初始化变量
    sess.run(init)
    print("随机初始化的权重%f, 偏置为%f" % (weights.eval(), bias.eval()))

    # 5.2 创建事件文件
    file_writer = tf.summary.FileWriter(logdir="./temp/summary/", graph=sess.graph)

    # saver.restore(sess, "./temp/ckpt/linearregression")
    print(weights.eval(), bias.eval())
    # 5.3训练模型
    for i in range(FLAGS.max_step):
        sess.run(optimizer)
        print("第%d步的误差为%f, 权重为%f, 偏置为%f" % (i, error.eval(), weights.eval(), bias.eval()))

        # 写入收集的变量
        summary = sess.run(merge)
        file_writer.add_summary(summary, i)

        saver.save(sess, "./temp/ckpt/linearregression")

你可能感兴趣的:(深度学习,机器学习,tensorflow,线性回归,深度学习)