用户想要去查询一个数据时,发现Redis内存数据库中没有要访问的数据,也就是缓存没有命中,于是再去访问持久层数据库,发现数据库中也没有要访问的数据,于是本次查询失败。那么当有大量这样的请求到来时,会给持久层数据库造成很大的压力(压力骤增),这就是缓存穿透的问题。
缓存穿透的发生,一般有这两种情况:
非法请求的限制
当有大量恶意请求访问不存在的数据时,也会发生缓存穿透,因此在API入口处我们要判断请求参数是否合理,请求参数是否含有非法值、请求字段是否存在,如果判断出是恶意请求就直接返回错误,避免进一步访问缓存和数据库。
缓存空值或者默认值
当我们线上业务发现缓存穿透的现象时,可以针对查询的数据,在缓存中设置一个空值或者默认值,同时会设置一个过期时间,这样后续请求就可以从缓存中读取到空值或者默认值,返回给应用,而不会继续查询数据库。
但是这种方法存在两个问题:
布隆过滤器
布隆过滤器是一种数据结构,对所有可能查询的参数以hash形式存储。
我们可以在写入数据库数据时,使用布隆过滤器做个标记,然后在用户请求到来时,业务线程确认缓存失效后,可以通过查询布隆过滤器快速判断数据是否存在,如果不存在,就不用通过查询数据库来判断数据是否存在。
即使发生了缓存穿透,大量请求只会查询 Redis 和布隆过滤器,而不会查询数据库,保证了数据库能正常运行,Redis 自身也是支持布隆过滤器的。
布隆过滤器由「初始值都为 0 的位图数组」和「 N 个哈希函数」两部分组成。当我们在写入数据库数据时,在布隆过滤器里做个标记,这样下次查询数据是否在数据库时,只需要查询布隆过滤器,如果查询到数据没有被标记,说明不在数据库中。
布隆过滤器会通过 3 个操作完成标记:
举个例子,假设有一个位图数组长度为 8,哈希函数 3 个的布隆过滤器。
在数据库写入数据 x 后,把数据 x 标记在布隆过滤器时,数据 x 会被 3 个哈希函数分别计算出 3 个哈希值,然后在对这 3 个哈希值对 8 取模,假设取模的结果为 1、4、6,然后把位图数组的第 1、4、6 位置的值设置为 1。当应用要查询数据 x 是否数据库时,通过布隆过滤器只要查到位图数组的第 1、4、6 位置的值是否全为 1,只要有一个为 0,就认为数据 x 不在数据库中。
布隆过滤器由于是基于哈希函数实现查找的,高效查找的同时存在哈希冲突的可能性,比如数据 x 和数据 y 可能都落在第 1、4、6 位置,而事实上,可能数据库中并不存在数据 y,存在误判的情况。
所以,查询布隆过滤器说数据存在,并不一定证明数据库中存在这个数据,但是查询到数据不存在,数据库中一定就不存在这个数据。
我们的业务通常会有几个数据会被频繁访问,比如秒杀活动,这类被频繁访问的数据被称为热点数据。(热点数据在不停的扛着高并发)
如果缓存中的某个热点数据过期了,此时大量的请求访问了该热点数据,就无法从缓存中读取,直接访问数据库,数据库很容易就被高并发的请求冲垮,这就是缓存击穿问题。
1、设置热点数据永不过期
由后台异步更新缓存
2、加互斥锁
使用分布式锁,保证对每个key同时只有一个线程去查询后端服务,其他线程没有获取分布式的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考验很大。
通常我们为了保证缓存中的数据与数据库中的数据一致性,会给Redis里的数据设置过期时间,当缓存数据过期后,用户访问的数据如果不在缓存里,业务系统需要重新生成缓存,因此就会访问数据库,并将数据更新到Redis里,这样后续请求都可以直接命中缓存。
那么,当大量缓存数据在同一时间过期(失效)或者Redis故障宕机时,如果此时有大量的用户请求,都无法在Redis中处理,于是全部请求都直接访问数据库,从而导致数据库的压力骤增,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃,这就是缓存雪崩的问题。
所以,发生缓存雪崩有两个原因:
大量缓存数据同时过期的解决方案:
1、均匀设置缓存时间
如果要给缓存数据设置过期时间,应该避免将大量的数据设置成同一个过期时间。我们可以在对缓存数据设置过期时间时,给这些数据的过期时间加上一个随机数,这样就保证数据不会在同一时间过期。
2、互斥锁
当业务线程在处理用户请求时,如果发现访问的数据不在 Redis 里,就加个互斥锁,保证同一时间内只有一个请求来构建缓存(从数据库读取数据,再将数据更新到 Redis 里),当缓存构建完成后,再释放锁。未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。
实现互斥锁的时候,最好设置超时时间,不然第一个请求拿到了锁,然后这个请求发生了某种意外而一直阻塞,一直不释放锁,这时其他请求也一直拿不到锁,整个系统就会出现无响应的现象。
3、双 key 策略
我们对缓存数据可以使用两个 key,一个是主 key,会设置过期时间,一个是备 key,不会设置过期,它们只是 key 不一样,但是 value 值是一样的,相当于给缓存数据做了个副本。
当业务线程访问不到「主 key 」的缓存数据时,就直接返回「备 key 」的缓存数据,然后在更新缓存的时候,同时更新「主 key 」和「备 key 」的数据。
双 key 策略的好处是,当主 key 过期了,有大量请求获取缓存数据的时候,直接返回备 key 的数据,这样可以快速响应请求。而不用因为 key 失效而导致大量请求被锁阻塞住(采用了互斥锁,仅一个请求来构建缓存),后续再通知后台线程,重新构建主 key 的数据。
4、后台更新缓存
业务线程不再负责更新缓存,缓存也不设置有效期,而是让缓存“永久有效”,并将更新缓存的工作交由后台线程定时更新。
Redis故障宕机的解决方案:
1、服务熔断机制
暂停业务应用对缓存服务的访问,直接返回错误,不用再继续访问数据库,从而降低对数据库的访问压力,保证数据库系统的正常运行,然后等到 Redis 恢复正常后,再允许业务应用访问缓存服务。
服务熔断机制是保护数据库的正常允许,但是暂停了业务应用访问缓存服系统,全部业务都无法正常工作
2、请求限流机制
只将少部分请求发送到数据库进行处理,再多的请求就在入口直接拒绝服务,等到 Redis 恢复正常并把缓存预热完后,再解除请求限流的机制。
3、构建Redis缓存高可用集群
通过主从节点的方式构建 Redis 缓存高可靠集群。如果 Redis 缓存的主节点故障宕机,从节点可以切换成为主节点,继续提供缓存服务,避免了由于 Redis 故障宕机而导致的缓存雪崩问题。