import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
X, y = datasets.make_moons(n_samples=500, noise=0.3, random_state=42) # n_samples 不赋值的话,默认生成 100个数据。
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()
from sklearn.linear_model import LogisticRegression
log_clf = LogisticRegression()
log_clf.fit(X_train, y_train)
log_clf.score(X_test, y_test) # 0.86399999999999999
from sklearn.svm import SVC
svm_clf = SVC()
svm_clf.fit(X_train, y_train)
svm_clf.score(X_test, y_test) # 0.88800000000000001
from sklearn.tree import DecisionTreeClassifier
dt_clf = DecisionTreeClassifier(random_state=666)
dt_clf.fit(X_train, y_train)
dt_clf.score(X_test, y_test) # 0.86399999999999999
y_predict1 = log_clf.predict(X_test)
y_predict2 = svm_clf.predict(X_test)
y_predict3 = dt_clf.predict(X_test)
# 少数服从多数;至少有两个模型认为它是 1,就判断为 1,否则为 0.
y_predict = np.array((y_predict1 + y_predict2 + y_predict3) >= 2, dtype='int')
y_predict[:10]
# array([1, 0, 0, 1, 1, 1, 0, 0, 0, 0])
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_predict) # 0.89600000000000002
from sklearn.ensemble import VotingClassifier # ensemble 就是集成学习的意思
voting_clf = VotingClassifier(estimators=[
('log_clf', LogisticRegression()),
('svm_clf', SVC()),
('dt_clf', DecisionTreeClassifier(random_state=666))],
voting='hard')
voting_clf.fit(X_train, y_train)
voting_clf.score(X_test, y_test) # 0.89600000000000002
VotingClassifier : https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
voting_clf2 = VotingClassifier(estimators=[
('log_clf', LogisticRegression()),
('svm_clf', SVC(probability=True)), # SVC 默认不计算概率;需要把参数 probability 设置为 true 才行。
('dt_clf', DecisionTreeClassifier(random_state=666))],
voting='soft')
voting_clf2.fit(X_train, y_train)
voting_clf2.score(X_test, y_test) # 0.91200000000000003
from sklearn.tree import DecisionTreeClassifier # 这里使用决策树模型,因为更能产生差异比较大的子模型;所以要在集成学习中,集成成百上千个子模型,首选决策树
from sklearn.ensemble import BaggingClassifier
# n_estimators:集成多少个子模型;max_samples:每个子模型看多少个样本数据;bootstrap:是否放回取样,true:放回。 Bagging 和 Pasting 在sklearn 中统一使用 BaggingClassifier,仅用 bootstrap 区分。
bagging_clf = BaggingClassifier(DecisionTreeClassifier(),
n_estimators=500, max_samples=100,
bootstrap=True)
bagging_clf.fit(X_train, y_train)
bagging_clf.score(X_test, y_test) # 0.91200000000000003
# 集成更多子模型,运行会稍微慢一些;理论上子模型越大,准确率越高
bagging_clf = BaggingClassifier(DecisionTreeClassifier(),
n_estimators=5000, max_samples=100,
bootstrap=True)
bagging_clf.fit(X_train, y_train)
bagging_clf.score(X_test, y_test) # 0.92000000000000004
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
bagging_clf = BaggingClassifier(DecisionTreeClassifier(),
n_estimators=500, max_samples=100,
bootstrap=True, oob_score=True) # 构造的使用需要增加 oob_score,告诉这个类需要记录oob
bagging_clf.fit(X, y)
BaggingClassifier(base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best'),
bootstrap=True, bootstrap_features=False, max_features=1.0,
max_samples=100, n_estimators=500, n_jobs=1, oob_score=True,
random_state=None, verbose=0, warm_start=False)
bagging_clf.oob_score_ # 0.91800000000000004
%%time
bagging_clf = BaggingClassifier(DecisionTreeClassifier(),
n_estimators=500, max_samples=100,
bootstrap=True, oob_score=True)
bagging_clf.fit(X, y)
'''
CPU times: user 1.81 s, sys: 27.2 ms, total: 1.84 s
Wall time: 2.95 s
'''
%%time
bagging_clf = BaggingClassifier(DecisionTreeClassifier(),
n_estimators=500, max_samples=100,
bootstrap=True, oob_score=True,
n_jobs=-1) # -1 所有的核
bagging_clf.fit(X, y)
'''
CPU times: user 385 ms, sys: 56.1 ms, total: 441 ms
Wall time: 1.83 s
'''
# max_features 每次取多少个特征
random_subspaces_clf = BaggingClassifier(DecisionTreeClassifier(),
n_estimators=500, max_samples=500, # 只有500个样本,取500个;相当于没有对样本数据随机
bootstrap=True, oob_score=True,
max_features=1, bootstrap_features=True)
random_subspaces_clf.fit(X, y)
random_subspaces_clf.oob_score_ # 0.83399999999999996
random_patches_clf = BaggingClassifier(DecisionTreeClassifier(),
n_estimators=500, max_samples=100, # 既 对样本数进行有放回随机采样,又对 特征进行...
bootstrap=True, oob_score=True,
max_features=1, bootstrap_features=True)
random_patches_clf.fit(X, y)
random_patches_clf.oob_score_ # 0.85799999999999998
from sklearn.ensemble import RandomForestClassifier
rf_clf = RandomForestClassifier(n_estimators=500, oob_score=True, random_state=666, n_jobs=-1)
rf_clf.fit(X, y)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=-1,
oob_score=True, random_state=666, verbose=0, warm_start=False)
rf_clf.oob_score_ # 0.89200000000000002
rf_clf2 = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, oob_score=True, random_state=666, n_jobs=-1)
rf_clf2.fit(X, y)
rf_clf2.oob_score_ # 0.90600000000000003
随机森林拥有决策树和BaggingClassifier的所有参数
from sklearn.ensemble import ExtraTreesClassifier
et_clf = ExtraTreesClassifier(n_estimators=500, bootstrap=True, oob_score=True, random_state=666, n_jobs=-1)
et_clf.fit(X, y)
ExtraTreesClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=-1,
oob_score=True, random_state=666, verbose=0, warm_start=False)
et_clf.oob_score_ # 0.89200000000000002
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import ExtraTreesRegressor
不再有 oob,还是使用 train_test_split。
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
ada_clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2), n_estimators=500)
ada_clf.fit(X_train, y_train)
AdaBoostClassifier(algorithm='SAMME.R',
base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=2,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best'),
learning_rate=1.0, n_estimators=500, random_state=None)
ada_clf.score(X_test, y_test) # 0.85599999999999998
from sklearn.ensemble import GradientBoostingClassifier
gb_clf = GradientBoostingClassifier(max_depth=2, n_estimators=30)
gb_clf.fit(X_train, y_train)
GradientBoostingClassifier(criterion='friedman_mse', init=None,
learning_rate=0.1, loss='deviance', max_depth=2,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=30,
presort='auto', random_state=None, subsample=1.0, verbose=0,
warm_start=False)
gb_clf.score(X_test, y_test) # 0.90400000000000003
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import GradientBoostingRegressor