神经网络的人脸识别方法,神经网络图像识别技术

神经网络如何识别和编码性别?

神经网络模拟人脑中的神经元,神经元相互连接。每个神经元接收数据,并将判断过程中产生的信号传输到下一个神经元,该神经元逐层传输,最终达到识别的目的,与其他模型不同,神经网络很像模糊统计预测模型。

由于这一特点,其适应性非常强。只要有充足的数据和充足的神经元,就可以实现识别,决策,预测等功能。

坦率地说,语言模型是一个条件概率分布,给定前面所有的单词,称为历史,计算下一个单词的概率分布,总的来说,n-gram只考虑历史中的几个最近的词,如果使用神经网络,不仅可以编码最近的单词,还可以编码历史中的各种信息,例如是否出现了某种单词,某种单词出现了多少次,可以用作输入特征。

由于历史是一个序列,RNN也可以用来建立语言模型,声学模型神经网络可用于声学模型。

一种称为混合,它使用DNN而不是原始GMM来计算每个帧属于每个音素的概率,然后使用HMM+viterbi算法来解码和编码性别的音素序列,另一种称为串联,它也使用DNN对帧进行分类,但不使用DNN的输出,而是采用窄层的值,这种的话他被称为瓶颈层在DNN作为特征的中间,然后使用传统的GMM+HMM进行建模。

其实人工神经网络他是一种简单的数学模型,它将类似于大脑神经突触连接的结构应用于信息处理。因为在工程和学术界里面,它也经常被直接称为神经网络或准神经网络。

神经网络是一种操作模型,它由大量的节点或神经元及其相互连接组成,每个节点代表一个称为激励函数的特定输出函数。

谷歌人工智能写作项目:爱发猫

如何快速学习神经网络算法识别验证码

验证码都是服务器生成的图片,如果是动态的,就是调用servlet生成的,怎么提取我还不太清楚,不过我想网络上应该会有很多资料写作猫

我现在看的是识别验证码的东西,在截取到验证码图片之后,针对这个黑白背景,只有干扰线的验证码。

机器学习之识别简单验证码时间2016-10-1522:46:31随风'SBlog主题数据挖掘关于验证码识别的文章网上很多图像识别的大神教程也比较多,不过大多数专业性太强了,对非专业人士读起来简直是天书,不过随着机器学习的普及,一大批机器学习的开源工具出现了,这也算对大多数像我一样的学渣的福音,由于最近项目中牵扯到了一些机器学习相关的东西,所以自己最近也一直在学习机器相关的东西,这篇验证码的识别也算是练手了,本文也算是学习中的笔记,所以文章中难免有一些错误,欢迎各路大神指点。

由于本人不是相关专业的,对于文中相关算法就不会具体去讨论了,主要以实战为目的。准备工作主要是用到了一些机器学习开源的框架以及一些辅助工具。

Scikit-Learn比较有名的Python机器学习模块,主要是操作简单。PybrainPython机器学习模块,主要以神经网络为核心,所有的训练方法都以神经网络为一个实例。

pytesseract图像识别小工具,本文主要是用来预处理训练样本的。PILPython图像处理库。

问题分析首先在进行具体工作之前,我们得看看我们需要解决的是什么问题,那么对于验证码识别来说,可以看作一个分类问题,对于数字的图片验证码来说的话,其实就是0-9数字分类的问题,验证码识别最难的部分在于怎么去将验证码进行切割成单个字符图片,当然对于图片裁剪也就是特征提取有很多办法,例如垂直投影法,等距切割法等等,其中等距切割也是比较简单的,但是对于稍微复杂一点的验证码识别时准确率非常低,因为等距切割时将验证码按照相同的宽度进行裁剪,对于那些字符宽度大小不一的,就算裁剪出来也不能很好的表示字符的特征,所以有时候需要先对图片进行一系列的预处理,例如字符矫正等等,然后再用垂直投影法在x轴和y轴上按照投影的大小进行裁剪。

对于垂直投影法来说的话,最后我们还得考虑训练集在维度上都同意,由于是非等级切割,所以每个图片的像素肯定不一样,所以为了维度统一还得进行填充,总之稍微麻烦一点。

这里主要是以等距切割为例子,因为在操作起来比较简单,那么掩码也是选用0-9的纯数字验证码来进行识别,验证码如下这样的图片看起来的话间距基本上都差不多大,所以在分割时也比较容易,将图片切成四块后,就可以拿每一块去进行训练识别了。

使用机器学习来进行训练和识别的话,我们就得考虑特征选取了,一般验证码识别有一套标准的流程,图片对于验证码识别来说我们关注的不是验证码的颜色,而是字符代表的含义,所以在图片处理时进行灰度化和二值化以及去噪,比如说去掉干扰线,那么去噪也有相应的算法来实现,这里不做具体讨论,二值化其实就是将图片呈现出两种颜色,即非黑即白,这样的好处是在特征处理时可以使用0和1来代表黑色和白色,0和1代表什么颜色取决于个人喜好。

这样的话将二值化和其它步骤处理后的图片进行特征提取,将黑色像素点标记成1,白色像素点标记成0,这样就可以得到图片的数值表示,那么特征维度就等于图片像素的大小,最终将图片按照X轴或者Y轴表示,即将像素的所标记的值合并到一行,例如呵呵000000101110000000000000000表示成呵呵000000101110000000000000000,这样每张图片就可以使用一行0和1的数值来表示。

进行特征提取之后,我们得到了图片在数学上的表示,那么下一步就需要进行模型训练了,由于如上文所述,图片识别是一个分类问题,所以在机器学习中,我主要采用了两种模型来进行训练,SVM支持向量机和BP神经网络来进行模型训练,SVM使用scikit-learn机器学习包里面的实现来做,神经网络使用Pybrain来进行实现。

有关SVM和BP神经网络的算法部分,大家最好还是去网上搜下相关的Paper,这样你才能知道什么算法能解决什么问题,以及它大概的原理是什么样子的,有能力的同学可以去对推导下这两个算法。

实践在问题分析部分我们已经对验证码识别的大概思路有了一个了解,那么这部分则主要正对上面所述部分进行具体实现。

首先,我们应该明白SVM和神经网络模型算法是属于有监督学习,即需要对样本进行标注,也就是标记每张图片表示的是那个数字,但是实际遇到的问题是,如果数据量小的话,我们可以进行人工标注,那么在数据量比较大的情况下,人工标注可能就不太现实了,所以对于图片来说的话也一样,你进行切割完成之后你必须得标注这个数字是几,所以我们需要对切割的图片进行预处理,也就是打标记,我比较懒,所以我也不会一个个去打标签,所以这里使用ocr来对切割的图片进行预分类,ocr在单文字识别上的效果正确率还是可以的,在ocr进行预分类之后,我们只需要去纠正那些分类错误的图片即可,这样就能大大的减少工作量。

这里实现主要有以下几个步骤:图片采集图片预处理(包括图片切割,二值化以及图像增强)图片的预分类标注以及手动纠错标注特征提取模型训练以及预测图片采集图片采集就比较简单,不过多的阐述,如下图代码所示将下载到了图片按照时间戳存到指定位置图片预处理以及图片裁剪对图片进行预处理后采用等距切割法对图片进行切割裁剪后的图片如下图片预分类图片预分类采用pytesseract来对分割的图片进行预分类,减轻工作量。

具体代码如下ocr的分类效果正确率应该在50%以上,剩下的就是对预分类的图片进行人工纠错了。ocr的分类效果图人工纠错和标记后的结果每个目录表示一个类别标签。

特征提取特征提取的具体内容请参考问题分析中,里面有详细的说明。

关键代码如下最终图片的数学上表示会以记录在中,数据的格式如下图所示红色线框表示一张图片数值上的表示,最后一个数字0表示该图片的类型,我是为了方便把标签追加到最后一行。

SVM模型分类这里svm的实现使用了scikit-learn来实现,关于scikit-learn的使用去官网看Tutorial就好了,这里需要说一下SVM关于参数选择的问题,我们都知道SVM支持多个核函数,例如高斯核、线性核、poly以及sgmoid核函数,但是选择那么核函数一开始对于不太熟悉的同学怎么选择的确是个问题,所以这里使用了scikit-learn的GridSearchCV来对参数进行最优化选择,经过参数寻优,这里高斯核的最终效果还是不错的,所以训练的时候直接使用高斯核来进行训练。

为了方便预测时的使用,这里对训练结果使用了joblib模块来进行持久化。为了简单对评价模型进行,这里使用了5折交叉验证来对结果进行检验。

最终结果的准确率在:Accuracy:0.96(+/-0.09)具体代码如下:举个预测的例子,看看效果BP神经网络模型分类BP神经网络也称负反馈神经网络,即按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一,在BP神经网络之后,又出现了在深度学习中应用最广泛的CNN即卷积神经网络,这几天也正在学习。

本文使用了三层BP神经网络来对训练集进行训练,即输入层+2层隐含层+输出层,关于BP神经网络本身这里需要注意的是激活函数的选择以及对于多分类问题输出层函数选择的问题,激活函数主要有sigmod、tanh以及relu,关于怎么选取激活函数,这块没有进行深入了解,一般都是每个激活函数都跑一次,看最终效果。

这里的神经网络模型分类主要是对Pybrain用法的学习以及BP神经网络的基本认识,输入层使用了LinearLayer即线性输入层,隐含层使用了SigmoidLayer即激活函数为sigmod的隐含层,输出层由于是多分类问题,所以使用了SoftmaxLayer,最终在神经网络计算的结果中选取数值最大的那个索引位置就是预测的验证码类别,也就是0-9之间的数值。

关于Pybrain的资料除了官方文档不是特别多,关于构建神经网络的方式提供了两种方式,一种是buildNetwork函数来进行构建,另外一种就是使用FeedForwardNetwork函数来进行构建,这里需要注意的是如果使用FeedForwardNetwork来进行构建的话,注意要手动给各层加上Bias偏置项,否则结果可能可能非常差,当时我实验时没加,半天计算结果不对,最后看了下buildNetwork函数的源代码才发现没加Bias项,还有就是需要注意迭代至收敛的步数即函数中的*maxEpochs=500,这个根据情况调整,Pybrain有自己的数据集格式,所以在使用时必须按照它的格式来进行数据的初始化。

这里除了输入层的维度(即验证码的训练集维度)和输出是固定的之外,其中隐含层的神经元个数也是可以调整的,具体的感兴趣的同学自己去调然后再看下结果。

对模型使用10折交叉验证进行了简单评估,错误率在Totalerror:0.062左右,效果比SVM的差一点,应该通参数调优应该可以提高准确率,不过重在学习。

训练集样本:主要代码如下:举个例子,来看看预测效果总结通过这个小实验,至少让我对机器学习和相关算法大致有了一个了解,同时作为安全人员来说至少知道了如何使用开源的机器学习框架来构架自己的模型,笔记中难免会有错误之处,欢迎大家提出意见。

怎么用训练好的神经网络进行模式识别

输入级每一个节点输入一个特征的值(或向量,向量时要复杂一点)。输出级输出的是分类的结果,即属于哪一类。以二分类问题为例输出端只有一个节点输出0或1。中间的结构在进行测试时不用关心。

不过这仅限于BP等比较简单的神经网络。

基于神经网络的人脸识别有哪些算法

上次的人脸识别仿真,我们用的是PCA和SVM方法进行人脸识别,该方法仍属于机器学习领域,未涉及神经网络的知识。这次使用的方法是基于PCA和BP神经网络对人脸识别。

其中,PCA的功能和上次一致,是用来对20张图片进行降维处理,最终产生8个主成分作为BP神经网络的输入;神经网络的输出层采用4个神经元,用来区分两个不同的人脸;本例的BP神经网络采用8-10-4的三层结构,输入层神经元数量选取8个,隐含层神经元数量选取10个,输出层神经元数量选取4个。

有什么好的图像识别教程,主要是讲原理的?

图像的组成:图像由什么组成的,这个问题不是通常意义上的概念,它不是指图片里面有什么我们可以看到的东西,而是图像的光学组成概念。即图像是由很多具备色彩种类、亮度等级等信息的基本像素点所组成的。

图像的识别:计算机初始状态只能识别像素点上的基本信息,这个和生物的视觉是一样的,生物之所以可以分辨物体是由于生物神经系统对原始图像处理后的结果。

而计算机的图像识别也是一个将原始光学信息进行逻辑分类处理的过程。

【图为大脑神经元】图像识别的要点:图像识别编程就是对原始图像点信息的综合处理,图像识别通常有轮廓识别、特征识别、色彩识别、材质识别、物体识别等等。

一般根据颜色、亮度等信息得出物体的轮廓,依据轮廓所对应的数据来确定轮廓的内容是什么物体或是什么特征,及特征及物体的判断离不开轮廓及对应逻辑数据的处理。

而材质识别的特点是根据问题的反光程度来识别,其同样离不开轮廓的识别及逻辑数据的判断。因此在图像识别中,轮廓识别是重中之重。

图像识别编程的要点:图像识别编程时务必将通常的图像概念刻意淡化而侧重为视觉数据的逻辑化,并通宵人类识别数据是的依据。即人脑识别图像的逻辑判断依据从而得出正确的逻辑编程思路。

5图片编程的注意事项:图片编程时不要将简单的处理繁杂化,同时明确要识别图像的目的及可以忽略细节的程度。尽量避免非逻辑必备信息的参杂,这个对于需要高速识别内容的项目尤为重要。

END注意事项有概念不清晰的请至网上自行查阅。文中内容纯属个人经验,对借鉴此产生的后果概不负责。

设计一个简单的人工神经网络识别 matlab源程序

神经网络的是我的毕业论文的一部分4.人工神经网络人的思维有逻辑性和直观性两种不同的基本方式。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。

然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。

这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。人工神经网络就是模拟人思维的第二种方式。

这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

4.1人工神经网络学习的原理人工神经网络首先要以一定的学习准则进行学习,然后才能工作。

现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。

如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。

这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。

一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

4.2人工神经网络的优缺点人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:(1)并行分布性处理因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。

同时如果将每一个神经元看作是一个小的处理单元,则整个系统可以是一个分布式计算系统,这样就避免了以往的“匹配冲突”,“组合爆炸”和“无穷递归”等题,推理速度快。

(2)可学习性一个相对很小的人工神经网络可存储大量的专家知识,并且能根据学习算法,或者利用样本指导系统来模拟现实环境(称为有教师学习),或者对输入进行自适应学习(称为无教师学习),不断地自动学习,完善知识的存储。

(3)鲁棒性和容错性由于采用大量的神经元及其相互连接,具有联想记忆与联想映射能力,可以增强专家系统的容错能力,人工神经网络中少量的神经元发生失效或错误,不会对系统整体功能带来严重的影响。

而且克服了传统专家系统中存在的“知识窄台阶”问题。(4)泛化能力人工神经网络是一类大规模的非线形系统,这就提供了系统自组织和协同的潜力。它能充分逼近复杂的非线形关系。

当输入发生较小变化,其输出能够与原输入产生的输出保持相当小的差距。

(5)具有统一的内部知识表示形式,任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,便于知识库的组织管理,通用性强。

虽然人工神经网络有很多优点,但基于其固有的内在机理,人工神经网络也不可避免的存在自己的弱点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。

(2)神经网络不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。(3)神经网络把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。

(4)神经网络的理论和学习算法还有待于进一步完善和提高。4.3神经网络的发展趋势及在柴油机故障诊断中的可行性神经网络为现代复杂大系统的状态监测和故障诊断提供了全新的理论方法和技术实现手段。

神经网络专家系统是一类新的知识表达体系,与传统专家系统的高层逻辑模型不同,它是一种低层数值模型,信息处理是通过大量的简单处理元件(结点)之间的相互作用而进行的。

由于它的分布式信息保持方式,为专家系统知识的获取与表达以及推理提供了全新的方式。

它将逻辑推理与数值运算相结合,利用神经网络的学习功能、联想记忆功能、分布式并行信息处理功能,解决诊断系统中的不确定性知识表示、获取和并行推理等问题。

通过对经验样本的学习,将专家知识以权值和阈值的形式存储在网络中,并且利用网络的信息保持性来完成不精确诊断推理,较好地模拟了专家凭经验、直觉而不是复杂的计算的推理过程。

但是,该技术是一个多学科知识交叉应用的领域,是一个不十分成熟的学科。一方面,装备的故障相当复杂;另一方面,人工神经网络本身尚有诸多不足之处:(1)受限于脑科学的已有研究成果。

由于生理实验的困难性,目前对于人脑思维与记忆机制的认识还很肤浅。(2)尚未建立起完整成熟的理论体系。

目前已提出了众多的人工神经网络模型,归纳起来,这些模型一般都是一个由结点及其互连构成的有向拓扑网,结点间互连强度所构成的矩阵,可通过某种学习策略建立起来。但仅这一共性,不足以构成一个完整的体系。

这些学习策略大多是各行其是而无法统一于一个完整的框架之中。(3)带有浓厚的策略色彩。这是在没有统一的基础理论支持下,为解决某些应用,而诱发出的自然结果。(4)与传统计算技术的接口不成熟。

人工神经网络技术决不能全面替代传统计算技术,而只能在某些方面与之互补,从而需要进一步解决与传统计算技术的接口问题,才能获得自身的发展。

虽然人工神经网络目前存在诸多不足,但是神经网络和传统专家系统相结合的智能故障诊断技术仍将是以后研究与应用的热点。它最大限度地发挥两者的优势。

神经网络擅长数值计算,适合进行浅层次的经验推理;专家系统的特点是符号推理,适合进行深层次的逻辑推理。

智能系统以并行工作方式运行,既扩大了状态监测和故障诊断的范围,又可满足状态监测和故障诊断的实时性要求。既强调符号推理,又注重数值计算,因此能适应当前故障诊断系统的基本特征和发展趋势。

随着人工神经网络的不断发展与完善,它将在智能故障诊断中得到广泛的应用。根据神经网络上述的各类优缺点,目前有将神经网络与传统的专家系统结合起来的研究倾向,建造所谓的神经网络专家系统。

理论分析与使用实践表明,神经网络专家系统较好地结合了两者的优点而得到更广泛的研究和应用。离心式制冷压缩机的构造和工作原理与离心式鼓风机极为相似。

但它的工作原理与活塞式压缩机有根本的区别,它不是利用汽缸容积减小的方式来提高汽体的压力,而是依靠动能的变化来提高汽体压力。

离心式压缩机具有带叶片的工作轮,当工作轮转动时,叶片就带动汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。

这种压缩机由于它工作时不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,所以称这种型式的压缩机为离心式压缩机。其中根据压缩机中安装的工作轮数量的多少,分为单级式和多级式。

如果只有一个工作轮,就称为单级离心式压缩机,如果是由几个工作轮串联而组成,就称为多级离心式压缩机。在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。

单级离心式制冷压缩机的构造主要由工作轮、扩压器和蜗壳等所组成。

压缩机工作时制冷剂蒸汽由吸汽口轴向进入吸汽室,并在吸汽室的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进入高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,因为只有通过工作轮才能将能量传给汽体)。

汽体在叶片作用下,一边跟着工作轮作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压流动,从而使汽体的压力和速度都得到提高。

由工作轮出来的汽体再进入截面积逐渐扩大的扩压器4(因为汽体从工作轮流出时具有较高的流速,扩压器便把动能部分地转化为压力能,从而提高汽体的压力)。汽体流过扩压器时速度减小,而压力则进一步提高。

经扩压器后汽体汇集到蜗壳中,再经排气口引导至中间冷却器或冷凝器中。

二、离心式制冷压缩机的特点与特性离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列优点:(1)单机制冷量大,在制冷量相同时它的体积小,占地面积少,重量较活塞式轻5~8倍。

(2)由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,因而工作可靠、运转平稳、噪音小、操作简单、维护费用低。(3)工作轮和机壳之间没有摩擦,无需润滑。

故制冷剂蒸汽与润滑油不接触,从而提高了蒸发器和冷凝器的传热性能。(4)能经济方便的调节制冷量且调节的范围较大。(5)对制冷剂的适应性差,一台结构一定的离心式制冷压缩机只能适应一种制冷剂。

(6)由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25~30万大卡/时以上。如制冷量太少,则要求流量小,流道窄,从而使流动阻力大,效率低。

但近年来经过不断改进,用于空调的离心式制冷压缩机,单机制冷量可以小到10万大卡/时左右。制冷与冷凝温度、蒸发温度的关系。

由物理学可知,回转体的动量矩的变化等于外力矩,则T=m(C2UR2-C1UR1)两边都乘以角速度ω,得Tω=m(C2UωR2-C1UωR1)也就是说主轴上的外加功率N为:N=m(U2C2U-U1C1U)上式两边同除以m则得叶轮给予单位质量制冷剂蒸汽的功即叶轮的理论能量头。

U2C2ω2C2UR1R2ω1C1U1C2rβ离心式制冷压缩机的特性是指理论能量头与流量之间变化关系,也可以表示成制冷W=U2C2U-U1C1U≈U2C2U(因为进口C1U≈0)又C2U=U2-C2rctgβC2r=Vυ1/(A2υ2)故有W=U22(1-Vυ1ctgβ)A2υ2U2式中:V—叶轮吸入蒸汽的容积流量(m3/s)υ1υ2——分别为叶轮入口和出口处的蒸汽比容(m3/kg)A2、U2—叶轮外缘出口面积(m2)与圆周速度(m/s)β—叶片安装角由上式可见,理论能量头W与压缩机结构、转速、冷凝温度、蒸发温度及叶轮吸入蒸汽容积流量有关。

对于结构一定、转速一定的压缩机来说,U2、A2、β皆为常量,则理论能量头W仅与流量V、蒸发温度、冷凝温度有关。

按照离心式制冷压缩机的特性,宜采用分子量比较大的制冷剂,目前离心式制冷机所用的制冷剂有F—11、F—12、F—22、F—113和F—114等。

我国目前在空调用离心式压缩机中应用得最广泛的是F—11和F—12,且通常是在蒸发温度不太低和大制冷量的情况下,选用离心式制冷压缩机。

此外,在石油化学工业中离心式的制冷压缩机则采用丙烯、乙烯作为制冷剂,只有制冷量特别大的离心式压缩机才用氨作为制冷剂。

三、离心式制冷压缩机的调节离心式制冷压缩机和其它制冷设备共同构成一个能量供给与消耗的统一系统。

制冷机组在运行时,只有当通过压缩机的制冷剂的流量与通过设备的流量相等时,以及压缩机所产生的能量头与制冷设备的阻力相适应时,制冷系统的工况才能保持稳定。

但是制冷机的负荷总是随外界条件与用户对冷量的使用情况而变化的,因此为了适应用户对冷负荷变化的需要和安全经济运行,就需要根据外界的变化对制冷机组进行调节,离心式制冷机组制冷量的调节有:1°改变压缩机的转速;2°采用可转动的进口导叶;3°改变冷凝器的进水量;4°进汽节流等几种方式,其中最常用的是转动进口导叶调节和进汽节流两种调节方法。

所谓转动进口导叶调节,就是转动压缩机进口处的导流叶片以使进入到叶轮去的汽体产生旋绕,从而使工作轮加给汽体的动能发生变化来调节制冷量。

所谓进汽节流调节,就是在压缩机前的进汽管道上安装一个调节阀,如要改变压缩机的工况时,就调节阀门的大小,通过节流使压缩机进口的压力降低,从而实现调节制冷量。

离心式压缩机制冷量的调节最经济有效的方法就是改变进口导叶角度,以改变蒸汽进入叶轮的速度方向(C1U)和流量V。但流量V必须控制在稳定工作范围内,以免效率下降。

 

你可能感兴趣的:(神经网络,人工智能,深度学习,cnn)