python+KLT光流法匹配

# 光立法匹配
import numpy as np
import cv2
from matplotlib import pyplot as plt
import copy
import os
import time

start_time = time.time()

MIN_MATCH_COUNT = 7

    # 第一步,打开usb摄像头,或者读取视频文件,一样
cap = cv2.VideoCapture('my_match_video_data/video/src18.mp4')  # 每一帧都是模板
bgr_all = cv2.imread('my_match_video_data/bgr/bgr_report.jpg')  # 大的背景
bgr_all_tmp = copy.deepcopy(bgr_all)

frames_all=cap.get(7)

name1 = "my_match_video2pic/20_KLT/src"
name2 = "my_match_video2pic/20_KLT/bgr"
def mkdir(path):
    folder = os.path.exists(path)
    if not folder:  # 判断是否存在文件夹如果不存在则创建为文件夹
        os.makedirs(path)  # makedirs 创建文件时如果路径不存在会创建这个路径

mkdir(name1)
mkdir(name2)


# 第二步:构建角点检测所需参数:角点个数、质量阈值、角点之间最小距离
feature_params = dict(maxCorners=40,
                      qualityLevel=0.3,
                      minDistance=50)
lk_params = dict(winSize=(15, 15),  # lucas kanade参数:搜索窗口、金字塔层数
                 maxLevel=3)
color = np.random.randint(0, 255, (100, 3))  # 随机颜色条

# 第三步:拿到第一帧图像并灰度化作为前一帧图片
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)  # 每一帧都是模板
bgr_gray = cv2.cvtColor(bgr_all_tmp, cv2.COLOR_BGR2GRAY)  # 大的背景

sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(bgr_gray, None)  # 大的背景
kp2, des2 = sift.detectAndCompute(old_gray, None)  # 每一帧的


FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE,
                    trees=5)  # 0为线性暴力搜索(应该可以尝试换一下看速度)https://blog.csdn.net/qq_36584673/article/details/121997887
search_params = dict(checks=50)  # 遍历的次数

flann = cv2.FlannBasedMatcher(index_params, search_params)  # 快速最近邻搜索库,
matches = flann.knnMatch(des1, des2,
                         k=2)  # 大的背景,每一帧的,最匹配的K个点 https://blog.csdn.net/qq_45769063/article/details/108773998

# store all the good matches as per Lowe's ratio test.
good = []
index_p0 = []
for m, n in matches:
    if m.distance < 0.6 * n.distance:
        # print("m")
        good.append(m)  # 索引下标,可以根据这个找到相应的坐标
        index_p0.append(m.queryIdx)

if len(good) > MIN_MATCH_COUNT:
    # src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)  # m.queryIdx描述符的下标 pt为关键点坐标  kp1是大的背景的
    p0 = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)  # 待匹配的 dst_pts(每一帧的)

p0_src = copy.deepcopy(p0)
print(len(p0))

# 第四步:返回所有检测特征点,需要输入图片,角点的最大数量,品质因子,minDistance


for frames in range(int(frames_all)-1):
    # 第六步:读取图片灰度化作为后一张图片的输入
    bgr_all_tmp = copy.deepcopy(bgr_all)

    ret, frame = cap.read()
    frame_tmp = copy.deepcopy(frame)
    frame_gray = cv2.cvtColor(frame_tmp, cv2.COLOR_BGR2GRAY)
    h,w = frame_gray.shape

    # 第七步:进行金字塔LK光流检测需要输入前一帧和当前图像及前一帧检测到的角点
    pl, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)

    # print(len(pl[st == 1]))

    print(len(pl[st == 1]))

    if len(pl[st == 1]) <= 10:  #270

        old_gray = frame_gray.copy()
        kp2, des2 = sift.detectAndCompute(old_gray, None)

        matches = flann.knnMatch(des1, des2,  # des1是大的背景, des2是每一帧的
                                 k=2)  #  https://blog.csdn.net/qq_45769063/article/details/108773998

        good = []
        index_p0 = []
        for m, n in matches:
            if m.distance < 0.6 * n.distance:
                good.append(m)
                index_p0.append(m.queryIdx)

        if len(good) > MIN_MATCH_COUNT:
            p0 = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)  # 待匹配的 dst_pts

        continue
    # 第八步:读取运动了的角点st == 1表示检测到的运动物体,即v和u表示为0


    index_tmp = []
    for i in range(len(st)):
        if st[i]==1:
            index_tmp.append(index_p0[i])
    dst_pts = np.float32([kp1[i].pt for i in index_tmp]).reshape(-1, 1, 2)  # 原图的索引坐标,src(大的背景模板)
    index_p0 = index_tmp


    good_new = pl[st == 1]  # 现在帧的
    good_old = p0[st == 1]  # 前一帧的

    src_pts = []
    for i, (new, old) in enumerate(zip(good_new, good_old)):  # 取每一帧的特征点坐标
        a, b = new.ravel()
        src_pts.append([[a, b]])
    src_pts = np.float32(src_pts)  # 每一帧的

    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)  # 5.0原图像的点经过变换后点与目标图像上对应点的误差,src是每一帧的,dst是大的背景


    pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
    dst = cv2.perspectiveTransform(pts, M)  # 大的背景上的

    img2 = cv2.polylines(bgr_all_tmp, [np.int32(dst)], True, (255, 0, 0), 10, cv2.LINE_AA)  # 用于绘制任何图像上的多边形  # 能运行的最后删除的东西

    srcc = []  # 每一帧的
    for i in dst:
        srcc.append(i[0])
    srcc = np.float32(srcc)
    dstt = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]])

    # # 通过运算得出M矩阵
    M_inver = cv2.getPerspectiveTransform(srcc, dstt)
    # # 提取特征图片
    bg_img = cv2.warpPerspective(bgr_all, M_inver, (w, h))


    cv2.imwrite(name1+"/src"+str(frames)+".png", frame)
    cv2.imwrite(name2+"/bgr"+str(frames)+".png", bg_img)

    print(frames, frames_all)

    cv2.namedWindow('result', cv2.WINDOW_NORMAL)  # 窗口大小可以改变
    cv2.imshow('result', img2)
    cv2.waitKey(0)

    # 第十步:更新前一帧图片和角点的位置
    old_gray = frame_gray.copy()
    p0 = good_new.reshape(-1, 1, 2)


end_time = time.time()
print("运行花费了"+str(end_time-start_time)+"秒")

cv2.destroyAllWindows()
cap.release()

程序意思为有一个待匹配的图,然后在一个更大的图里找到与之匹配的,再通过透视变换,转变为同一视角的。

效果图:
python+KLT光流法匹配_第1张图片

python+KLT光流法匹配_第2张图片

你可能感兴趣的:(python,opencv)