【李代数求偏导】SLAM中李代数SE3求偏导左扰动模型和右扰动模型的区别

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 结论
    • 1、左扰动模型:
    • 2、右扰动模型:
      • 2.1右扰动+右乘更新
      • 2.2右扰动+左乘更新
    • 3、将T展开后求偏导(具体看后文)
      • 3.1右扰动+右乘更新
      • 3.2左扰动+左乘更新
  • 一、利用左扰动模型求雅可比矩阵
  • 二、利用右扰动模型求雅可比矩阵
    • 2.1 右扰动模型+右乘更新
    • 2.2右扰动模型+左乘更新
      • 三、把T展开后求Jacobin
    • 3.1右扰动+右乘更新
    • 3.2左扰动+左乘更新


前言

在学习SLAM的过程中,我一直对用左扰动模型和右扰动模型求SE3的偏导有疑惑,好奇他们的计算结果有什么区别。本文用《SLAM十四讲》ch7的实验验证了两者的差别。另外推荐一篇知乎上讲的不错的文章。

http://www-quic.zhihu.com/question/454486535


结论

首先放出实验结果,共分为两组:
实验求解的问题是 P c i = T c w P w i = R c w f w i + t Pci=TcwPwi=Rcwfwi+t Pci=TcwPwi=Rcwfwi+t
其中 P c 为 i 时刻特征点在相机坐标系的坐标, P w 为 i 时刻特征点在世界坐标系下的坐标 Pc为i时刻特征点在相机坐标系的坐标, Pw为i时刻特征点在世界坐标系下的坐标 Pci时刻特征点在相机坐标系的坐标,Pwi时刻特征点在世界坐标系下的坐标

这里我们采用左扰动模型在给定EPNP计算结果为初始值的情况下的优化结果为参考,计算各种方法的误差大小


1、左扰动模型:

用EPNP计算初始值并进行优化的结果如下

因为以其自身为参考,精度转化产生了误差(实际应该为0),这里误差小不代表左扰动就好,只是那它本身作为标准而已。(不太严谨请见谅)。

与左扰动优化的姿态误差 dR=4.76555e-07
与左扰动优化的位置误差 dt=2.12013e-07
与EPNP姿态误差 dR=0.00238751
与EPNP位置误差 dt=0.00283737

初始值为零直接进行优化的结果如下:

与左扰动优化的姿态误差 dR=2.75866
与左扰动优化的位置误差 dt=3.57404
与EPNP姿态误差 dR=2.75899
与EPNP位置误差 dt=3.57507

2、右扰动模型:

2.1右扰动+右乘更新

用EPNP计算初始值并进行优化的结果如下

与左扰动优化的姿态误差 dR=8.57513e-05
与左扰动优化的位置误差 dt=8.69039e-05
与EPNP姿态误差 dR=0.00245202
与EPNP位置误差 dt=0.00292116

初始值为零直接进行优化的结果如下:

与左扰动优化的姿态误差 dR=2.79226
与左扰动优化的位置误差 dt=3.01685
与EPNP姿态误差 dR=1.73205
与EPNP位置误差 dt=2.94471

2.2右扰动+左乘更新

用EPNP计算初始值并进行优化的结果如下

与左扰动优化的姿态误差 dR=7.07704e-05
与左扰动优化的位置误差 dt=6.83382e-05
与EPNP姿态误差 dR=0.00242649
与EPNP位置误差 dt=0.00288342

初始值为零直接进行优化的结果如下:

与左扰动优化的姿态误差 dR=2.82814
与左扰动优化的位置误差 dt=0.141753
与EPNP姿态误差 dR=2.82817
与EPNP位置误差 dt=0.140666

3、将T展开后求偏导(具体看后文)

3.1右扰动+右乘更新

用EPNP计算初始值并进行优化的结果如下

与左扰动优化的姿态误差 dR=9.14896e-05
与左扰动优化的位置误差 dt=9.07626e-05
与EPNP姿态误差 dR=0.00245898
与EPNP位置误差 dt=0.00292396

初始值为零直接进行优化的结果如下:

与左扰动优化的姿态误差 dR=2.82832
与左扰动优化的位置误差 dt=0.172576
与EPNP姿态误差 dR=2.82833
与EPNP位置误差 dt=0.170768

3.2左扰动+左乘更新

用EPNP计算初始值并进行优化的结果如下

与左扰动优化的姿态误差 dR=6.46337e-05
与左扰动优化的位置误差 dt=5.86872e-05
与EPNP姿态误差 dR=0.00243119
与EPNP位置误差 dt=0.00288491

初始值为零直接进行优化的结果如下:

与左扰动优化的姿态误差 dR=2.78006
与左扰动优化的位置误差 dt=2.59136
与EPNP姿态误差 dR=2.78033
与EPNP位置误差 dt=2.59216

一、利用左扰动模型求雅可比矩阵

根据《SLAM十四讲》里的左扰动求导可知:
【李代数求偏导】SLAM中李代数SE3求偏导左扰动模型和右扰动模型的区别_第1张图片其g2o库中的线性化的函数linearizeOplus()如下:详细对比可以发现与书中的公式是一一对应的。

// 这是g2o官方库中的代码,/home/jxl/software/g2o/g2o/types/sba/types_six_dof_expmap.cpp
void EdgeProjectXYZ2UV::linearizeOplus() {
  VertexSE3Expmap * vj = static_cast<VertexSE3Expmap *>(_vertices[1]);
  SE3Quat T(vj->estimate());
  VertexSBAPointXYZ* vi = static_cast<VertexSBAPointXYZ*>(_vertices[0]);
  Vector3D xyz = vi->estimate();
  Vector3D xyz_trans = T.map(xyz);

  double x = xyz_trans[0];
  double y = xyz_trans[1];
  double z = xyz_trans[2];
  double z_2 = z*z;

  const CameraParameters * cam = static_cast<const CameraParameters *>(parameter(0));

  Matrix<double,2,3,Eigen::ColMajor> tmp;
  tmp(0,0) = cam->focal_length;
  tmp(0,1) = 0;
  tmp(0,2) = -x/z*cam->focal_length;

  tmp(1,0) = 0;
  tmp(1,1) = cam->focal_length;
  tmp(1,2) = -y/z*cam->focal_length;

  _jacobianOplusXi =  -1./z * tmp * T.rotation().toRotationMatrix();

  _jacobianOplusXj(0,0) =  x*y/z_2 *cam->focal_length;
  _jacobianOplusXj(0,1) = -(1+(x*x/z_2)) *cam->focal_length;
  _jacobianOplusXj(0,2) = y/z *cam->focal_length;
  _jacobianOplusXj(0,3) = -1./z *cam->focal_length;
  _jacobianOplusXj(0,4) = 0;
  _jacobianOplusXj(0,5) = x/z_2 *cam->focal_length;

  _jacobianOplusXj(1,0) = (1+y*y/z_2) *cam->focal_length;
  _jacobianOplusXj(1,1) = -x*y/z_2 *cam->focal_length;
  _jacobianOplusXj(1,2) = -x/z *cam->focal_length;
  _jacobianOplusXj(1,3) = 0;
  _jacobianOplusXj(1,4) = -1./z *cam->focal_length;
  _jacobianOplusXj(1,5) = y/z_2 *cam->focal_length;
}

用EPNP计算初始值并进行优化的结果如下:

-- Max dist : 94.000000 
-- Min dist : 4.000000 
一共找到了79组匹配点
3d-2d pairs: 75
R=
[0.9979059095501264, -0.05091940089110115, 0.03988747043654633;
 0.0498186625425323, 0.998362315743816, 0.02812094175376019;
 -0.04125404886078842, -0.02607491352883862, 0.9988083912027648]
t=
[-0.1267821389558076;
 -0.008439496817513407;
 0.06034935748888434]
calling bundle adjustment
iteration= 0	 chi2= 0.001139	 time= 0.000299452	 cumTime= 0.000299452	 edges= 75	 schur= 1	 lambda= 78.084078	 levenbergIter= 1
iteration= 1	 chi2= 0.000000	 time= 4.3151e-05	 cumTime= 0.000342603	 edges= 75	 schur= 1	 lambda= 52.056052	 levenbergIter= 1
iteration= 2	 chi2= 0.000000	 time= 4.1157e-05	 cumTime= 0.00038376	 edges= 75	 schur= 1	 lambda= 34.704035	 levenbergIter= 1
iteration= 3	 chi2= 0.000000	 time= 3.9925e-05	 cumTime= 0.000423685	 edges= 75	 schur= 1	 lambda= 23.136023	 levenbergIter= 1
iteration= 4	 chi2= 0.000000	 time= 3.9655e-05	 cumTime= 0.00046334	 edges= 75	 schur= 1	 lambda= 15.424015	 levenbergIter= 1
iteration= 5	 chi2= 0.000000	 time= 3.9454e-05	 cumTime= 0.000502794	 edges= 75	 schur= 1	 lambda= 10.282677	 levenbergIter= 1
iteration= 6	 chi2= 0.000000	 time= 0.000139251	 cumTime= 0.000642045	 edges= 75	 schur= 1	 lambda= 224628.504738	 levenbergIter= 6
iteration= 7	 chi2= 0.000000	 time= 9.2594e-05	 cumTime= 0.000734639	 edges= 75	 schur= 1	 lambda= 230019588.851357	 levenbergIter= 4
optimization costs time: 0.00132516 seconds.

after optimization:
T=
  0.997848 -0.0510879  0.0410952  -0.128454
 0.0499059   0.998324  0.0292911 -0.0103276
-0.0425228 -0.0271772   0.998726  0.0590494
         0          0          0          1
与左扰动优化的姿态误差 dR=4.76555e-07
与左扰动优化的位置误差 dt=2.12013e-07
与EPNP姿态误差 dR=0.00238751
与EPNP位置误差 dt=0.00283737

初始值为零直接进行优化的结果如下:

-- Max dist : 94.000000 
-- Min dist : 4.000000 
一共找到了79组匹配点
3d-2d pairs: 75
R=
[0, 0, 0;
 0, 0, 0;
 0, 0, 0]
t=
[0;
 0;
 0]
calling bundle adjustment
iteration= 0	 chi2= 2491379.880686	 time= 0.000143138	 cumTime= 0.000143138	 edges= 75	 schur= 1	 lambda= 155.465777	 levenbergIter= 1
iteration= 1	 chi2= 713797.506230	 time= 4.1999e-05	 cumTime= 0.000185137	 edges= 75	 schur= 1	 lambda= 103.643851	 levenbergIter= 1
iteration= 2	 chi2= 258277.050045	 time= 4.0386e-05	 cumTime= 0.000225523	 edges= 75	 schur= 1	 lambda= 69.095901	 levenbergIter= 1
iteration= 3	 chi2= 7554.374159	 time= 4.0296e-05	 cumTime= 0.000265819	 edges= 75	 schur= 1	 lambda= 23.031967	 levenbergIter= 1
iteration= 4	 chi2= 11.920051	 time= 4.0566e-05	 cumTime= 0.000306385	 edges= 75	 schur= 1	 lambda= 7.677322	 levenbergIter= 1
iteration= 5	 chi2= 0.000028	 time= 3.9915e-05	 cumTime= 0.0003463	 edges= 75	 schur= 1	 lambda= 2.559107	 levenbergIter= 1
iteration= 6	 chi2= 0.000000	 time= 3.9694e-05	 cumTime= 0.000385994	 edges= 75	 schur= 1	 lambda= 1.706072	 levenbergIter= 1
iteration= 7	 chi2= 0.000000	 time= 3.9223e-05	 cumTime= 0.000425217	 edges= 75	 schur= 1	 lambda= 1.137381	 levenbergIter= 1
iteration= 8	 chi2= 0.000000	 time= 3.9424e-05	 cumTime= 0.000464641	 edges= 75	 schur= 1	 lambda= 0.758254	 levenbergIter= 1
iteration= 9	 chi2= 0.000000	 time= 4.9954e-05	 cumTime= 0.000514595	 edges= 75	 schur= 1	 lambda= 0.505503	 levenbergIter= 1
iteration= 10	 chi2= 0.000000	 time= 3.8973e-05	 cumTime= 0.000553568	 edges= 75	 schur= 1	 lambda= 0.337002	 levenbergIter= 1
iteration= 11	 chi2= 0.000000	 time= 3.9274e-05	 cumTime= 0.000592842	 edges= 75	 schur= 1	 lambda= 0.224668	 levenbergIter= 1
iteration= 12	 chi2= 0.000000	 time= 0.00012803	 cumTime= 0.000720872	 edges= 75	 schur= 1	 lambda= 4907.944462	 levenbergIter= 6
iteration= 13	 chi2= 0.000000	 time= 5.6696e-05	 cumTime= 0.000777568	 edges= 75	 schur= 1	 lambda= 6543.925950	 levenbergIter= 2
iteration= 14	 chi2= 0.000000	 time= 5.6817e-05	 cumTime= 0.000834385	 edges= 75	 schur= 1	 lambda= 8725.234600	 levenbergIter= 2
iteration= 15	 chi2= 0.000000	 time= 3.9153e-05	 cumTime= 0.000873538	 edges= 75	 schur= 1	 lambda= 5816.823067	 levenbergIter= 1
iteration= 16	 chi2= 0.000000	 time= 7.4379e-05	 cumTime= 0.000947917	 edges= 75	 schur= 1	 lambda= 31023.056355	 levenbergIter= 3
iteration= 17	 chi2= 0.000000	 time= 3.9614e-05	 cumTime= 0.000987531	 edges= 75	 schur= 1	 lambda= 62046.112709	 levenbergIter= 1
optimization costs time: 0.00208049 seconds.

after optimization:
T=
 0.959118 0.0610826 -0.276336  0.965119
 0.167898 -0.908845  0.381852 -0.613753
-0.227822 -0.412637 -0.881946  -3.28965
        0         0         0         1
与左扰动优化的姿态误差 dR=2.75866
与左扰动优化的位置误差 dt=3.57404
与EPNP姿态误差 dR=2.75899
与EPNP位置误差 dt=3.57507

二、利用右扰动模型求雅可比矩阵

右扰动模型的雅可比推导如下:
【李代数求偏导】SLAM中李代数SE3求偏导左扰动模型和右扰动模型的区别_第2张图片
这里代码的处理稍微复杂一点,首先我们需要把g2o官方库中的 EdgeProjectXYZ2UV 单独提出了,我们就命名为 MyEdgeProjectXYZ2UV ,除了linearizeOplus()函数不一样,其他都一样。下面我们修改linearizeOplus()函数:

void MyEdgeProjectXYZ2UV::linearizeOplus() {
  MyVertexSE3Expmap * vj = static_cast<MyVertexSE3Expmap *>(_vertices[1]);
  SE3Quat T(vj->estimate());
  VertexSBAPointXYZ* vi = static_cast<VertexSBAPointXYZ*>(_vertices[0]);
  Vector3D xyz = vi->estimate();
  Vector3D xyz_trans = T.map(xyz);

  double x = xyz_trans[0];
  double y = xyz_trans[1];
  double z = xyz_trans[2];
  double z_2 = z*z;

  const CameraParameters * cam = static_cast<const CameraParameters *>(parameter(0));

  Eigen::Matrix<double,2,3,Eigen::ColMajor> tmp;
  tmp(0,0) = cam->focal_length;
  tmp(0,1) = 0;
  tmp(0,2) = -x/z*cam->focal_length;

  tmp(1,0) = 0;
  tmp(1,1) = cam->focal_length;
  tmp(1,2) = -y/z*cam->focal_length;
  Eigen::Matrix3d tmp_R = T.rotation().toRotationMatrix();
  _jacobianOplusXi =  -1./z * tmp * T.rotation().toRotationMatrix();

  Eigen::Matrix<double,3,6,Eigen::ColMajor> tmp_p;
  //右扰动
  Eigen::Matrix3d tmp_fx;
  tmp_fx << 0, -xyz[2], xyz[1], xyz[2], 0, -xyz[0], -xyz[1], xyz[0], 0;
  tmp_p.block(0, 0, 3, 3) = -tmp_R * tmp_fx;//对姿态的雅可比 = -R[p]^
  tmp_p.block(0, 3, 3, 3) = tmp_R;//对位置的雅可比 = R
  //左扰动
  // Eigen::Matrix3d tmp_fx;
  // tmp_fx << 0.0, -xyz_trans[2], xyz_trans[1], xyz_trans[2], 0.0, -xyz_trans[0], -xyz_trans[1], xyz_trans[0], 0.0;
  // tmp_p.block(0, 0, 3, 3) = -tmp_fx;//对姿态的雅可比 = -R[p]^
  // tmp_p.block(0, 3, 3, 3) = Eigen::Matrix3d::Identity(3, 3);//对位置的雅可比 = R

  Eigen::Matrix<double,2,6,Eigen::ColMajor> jres = (-1./z * tmp * tmp_p);
  
  _jacobianOplusXj = jres;

除了修改linearizeOplus()函数, 对于待优化姿态变量的更新我们同样需要修改为右乘(右扰动模型),具体做法与上述类似,将官方库中的 VertexSE3Expmap 提取出来,并修改 oplusImpl()函数。同时我们对比,不修改使用左乘更新和使用右乘更新二者的区别。

  virtual void oplusImpl(const double* update_)  {
    Eigen::Map<const Vector6d> update(update_);
    setEstimate(SE3Quat::exp(update)*estimate());
  }

2.1 右扰动模型+右乘更新

提供EPNP初始值的情况下,输出结果为:

-- Max dist : 94.000000 
-- Min dist : 4.000000 
一共找到了79组匹配点
3d-2d pairs: 75
R=
[0.9979059095501264, -0.05091940089110115, 0.03988747043654633;
 0.0498186625425323, 0.998362315743816, 0.02812094175376019;
 -0.04125404886078842, -0.02607491352883862, 0.9988083912027648]
t=
[-0.1267821389558076;
 -0.008439496817513407;
 0.06034935748888434]
calling bundle adjustment
iteration= 0	 chi2= 0.000959	 time= 0.000131485	 cumTime= 0.000131485	 edges= 75	 schur= 1	 lambda= 71.408604	 levenbergIter= 1
iteration= 1	 chi2= 0.000000	 time= 4.3151e-05	 cumTime= 0.000174636	 edges= 75	 schur= 1	 lambda= 47.605736	 levenbergIter= 1
iteration= 2	 chi2= 0.000000	 time= 4.0185e-05	 cumTime= 0.000214821	 edges= 75	 schur= 1	 lambda= 31.737157	 levenbergIter= 1
iteration= 3	 chi2= 0.000000	 time= 4.0486e-05	 cumTime= 0.000255307	 edges= 75	 schur= 1	 lambda= 21.158105	 levenbergIter= 1
iteration= 4	 chi2= 0.000000	 time= 4.0565e-05	 cumTime= 0.000295872	 edges= 75	 schur= 1	 lambda= 14.105403	 levenbergIter= 1
iteration= 5	 chi2= 0.000000	 time= 4.0496e-05	 cumTime= 0.000336368	 edges= 75	 schur= 1	 lambda= 9.403602	 levenbergIter= 1
iteration= 6	 chi2= 0.000000	 time= 4.0376e-05	 cumTime= 0.000376744	 edges= 75	 schur= 1	 lambda= 6.269068	 levenbergIter= 1
iteration= 7	 chi2= 0.000000	 time= 0.000133589	 cumTime= 0.000510333	 edges= 75	 schur= 1	 lambda= 136949.883156	 levenbergIter= 6
iteration= 8	 chi2= 0.000000	 time= 4.0345e-05	 cumTime= 0.000550678	 edges= 75	 schur= 1	 lambda= 91299.922104	 levenbergIter= 1
iteration= 9	 chi2= 0.000000	 time= 5.0985e-05	 cumTime= 0.000601663	 edges= 75	 schur= 1	 lambda= 60866.614736	 levenbergIter= 1
iteration= 10	 chi2= 0.000000	 time= 4.0776e-05	 cumTime= 0.000642439	 edges= 75	 schur= 1	 lambda= 121733.229472	 levenbergIter= 1
optimization costs time: 0.00125543 seconds.

after optimization:
T=
  0.997848 -0.0510535  0.0411376  -0.128522
 0.0498693   0.998325  0.0293161 -0.0103714
-0.0425654 -0.0272015   0.998723  0.0590173
         0          0          0          1
与左扰动优化的姿态误差 dR=8.57513e-05
与左扰动优化的位置误差 dt=8.69039e-05
与EPNP姿态误差 dR=0.00245202
与EPNP位置误差 dt=0.00292116

不提供初始值(初始值为0)的情况下:

-- Max dist : 94.000000 
-- Min dist : 4.000000 
一共找到了79组匹配点
3d-2d pairs: 75
R=
[0, 0, 0;
 0, 0, 0;
 0, 0, 0]
t=
[0;
 0;
 0]
calling bundle adjustment
iteration= 0	 chi2= 2491379.880680	 time= 0.00026826	 cumTime= 0.00026826	 edges= 75	 schur= 1	 lambda= 155.465777	 levenbergIter= 1
iteration= 1	 chi2= 1195376.724224	 time= 4.4303e-05	 cumTime= 0.000312563	 edges= 75	 schur= 1	 lambda= 103.643851	 levenbergIter= 1
iteration= 2	 chi2= 524300.404187	 time= 4.2079e-05	 cumTime= 0.000354642	 edges= 75	 schur= 1	 lambda= 69.095901	 levenbergIter= 1
iteration= 3	 chi2= 32476.786520	 time= 4.1277e-05	 cumTime= 0.000395919	 edges= 75	 schur= 1	 lambda= 23.031967	 levenbergIter= 1
iteration= 4	 chi2= 106.158049	 time= 4.1027e-05	 cumTime= 0.000436946	 edges= 75	 schur= 1	 lambda= 7.677322	 levenbergIter= 1
iteration= 5	 chi2= 0.000036	 time= 4.1387e-05	 cumTime= 0.000478333	 edges= 75	 schur= 1	 lambda= 2.559107	 levenbergIter= 1
iteration= 6	 chi2= 0.000000	 time= 4.0916e-05	 cumTime= 0.000519249	 edges= 75	 schur= 1	 lambda= 1.706072	 levenbergIter= 1
iteration= 7	 chi2= 0.000000	 time= 4.0606e-05	 cumTime= 0.000559855	 edges= 75	 schur= 1	 lambda= 1.137381	 levenbergIter= 1
iteration= 8	 chi2= 0.000000	 time= 4.0666e-05	 cumTime= 0.000600521	 edges= 75	 schur= 1	 lambda= 0.758254	 levenbergIter= 1
iteration= 9	 chi2= 0.000000	 time= 4.0285e-05	 cumTime= 0.000640806	 edges= 75	 schur= 1	 lambda= 0.505503	 levenbergIter= 1
iteration= 10	 chi2= 0.000000	 time= 0.000133599	 cumTime= 0.000774405	 edges= 75	 schur= 1	 lambda= 11042.875040	 levenbergIter= 6
iteration= 11	 chi2= 0.000000	 time= 4.0445e-05	 cumTime= 0.00081485	 edges= 75	 schur= 1	 lambda= 7361.916694	 levenbergIter= 1
iteration= 12	 chi2= 0.000000	 time= 4.0095e-05	 cumTime= 0.000854945	 edges= 75	 schur= 1	 lambda= 4907.944462	 levenbergIter= 1
iteration= 13	 chi2= 0.000000	 time= 4.0395e-05	 cumTime= 0.00089534	 edges= 75	 schur= 1	 lambda= 3271.962975	 levenbergIter= 1
iteration= 14	 chi2= 0.000000	 time= 4.1607e-05	 cumTime= 0.000936947	 edges= 75	 schur= 1	 lambda= 6543.925950	 levenbergIter= 1
optimization costs time: 0.00189716 seconds.

after optimization:
T=
 0.981512   0.18784 0.0367605  0.302452
 0.168669 -0.939616   0.29778  -0.45664
0.0904756 -0.286074 -0.953926  -2.89333
        0         0         0         1
与左扰动优化的姿态误差 dR=2.79226
与左扰动优化的位置误差 dt=3.01685
与EPNP姿态误差 dR=1.73205
与EPNP位置误差 dt=2.94471

2.2右扰动模型+左乘更新

提供EPNP初始值的情况下,输出结果为:

-- Max dist : 94.000000 
-- Min dist : 4.000000 
一共找到了79组匹配点
3d-2d pairs: 75
R=
[0.9979059095501264, -0.05091940089110115, 0.03988747043654633;
 0.0498186625425323, 0.998362315743816, 0.02812094175376019;
 -0.04125404886078842, -0.02607491352883862, 0.9988083912027648]
t=
[-0.1267821389558076;
 -0.008439496817513407;
 0.06034935748888434]
calling bundle adjustment
iteration= 0	 chi2= 0.214111	 time= 0.000119923	 cumTime= 0.000119923	 edges= 75	 schur= 1	 lambda= 71.408604	 levenbergIter= 1
iteration= 1	 chi2= 0.001222	 time= 4.3211e-05	 cumTime= 0.000163134	 edges= 75	 schur= 1	 lambda= 23.802868	 levenbergIter= 1
iteration= 2	 chi2= 0.000015	 time= 5.2938e-05	 cumTime= 0.000216072	 edges= 75	 schur= 1	 lambda= 15.868579	 levenbergIter= 1
iteration= 3	 chi2= 0.000000	 time= 4.1568e-05	 cumTime= 0.00025764	 edges= 75	 schur= 1	 lambda= 10.579052	 levenbergIter= 1
iteration= 4	 chi2= 0.000000	 time= 4.1016e-05	 cumTime= 0.000298656	 edges= 75	 schur= 1	 lambda= 7.052702	 levenbergIter= 1
iteration= 5	 chi2= 0.000000	 time= 4.1007e-05	 cumTime= 0.000339663	 edges= 75	 schur= 1	 lambda= 4.701801	 levenbergIter= 1
iteration= 6	 chi2= 0.000000	 time= 4.1227e-05	 cumTime= 0.00038089	 edges= 75	 schur= 1	 lambda= 3.134534	 levenbergIter= 1
iteration= 7	 chi2= 0.000000	 time= 4.0436e-05	 cumTime= 0.000421326	 edges= 75	 schur= 1	 lambda= 2.089689	 levenbergIter= 1
iteration= 8	 chi2= 0.000000	 time= 4.0866e-05	 cumTime= 0.000462192	 edges= 75	 schur= 1	 lambda= 1.393126	 levenbergIter= 1
iteration= 9	 chi2= 0.000000	 time= 4.0906e-05	 cumTime= 0.000503098	 edges= 75	 schur= 1	 lambda= 0.928751	 levenbergIter= 1
iteration= 10	 chi2= 0.000000	 time= 4.0476e-05	 cumTime= 0.000543574	 edges= 75	 schur= 1	 lambda= 0.619167	 levenbergIter= 1
iteration= 11	 chi2= 0.000000	 time= 4.0526e-05	 cumTime= 0.0005841	 edges= 75	 schur= 1	 lambda= 0.412778	 levenbergIter= 1
iteration= 12	 chi2= 0.000000	 time= 4.0566e-05	 cumTime= 0.000624666	 edges= 75	 schur= 1	 lambda= 0.275185	 levenbergIter= 1
iteration= 13	 chi2= 0.000000	 time= 4.0856e-05	 cumTime= 0.000665522	 edges= 75	 schur= 1	 lambda= 0.183457	 levenbergIter= 1
iteration= 14	 chi2= 0.000000	 time= 4.0806e-05	 cumTime= 0.000706328	 edges= 75	 schur= 1	 lambda= 0.122305	 levenbergIter= 1
iteration= 15	 chi2= 0.000000	 time= 0.000135002	 cumTime= 0.00084133	 edges= 75	 schur= 1	 lambda= 2671.785558	 levenbergIter= 6
iteration= 16	 chi2= 0.000000	 time= 4.0897e-05	 cumTime= 0.000882227	 edges= 75	 schur= 1	 lambda= 1781.190372	 levenbergIter= 1
iteration= 17	 chi2= 0.000000	 time= 4.0826e-05	 cumTime= 0.000923053	 edges= 75	 schur= 1	 lambda= 1187.460248	 levenbergIter= 1
iteration= 18	 chi2= 0.000000	 time= 9.6951e-05	 cumTime= 0.00102	 edges= 75	 schur= 1	 lambda= 1215959.293810	 levenbergIter= 4
optimization costs time: 0.00223933 seconds.

after optimization:
T=
  0.997848 -0.0510589   0.041136  -0.128521
 0.0498758   0.998326   0.029291 -0.0103273
-0.0425627 -0.0271763   0.998724  0.0590352
         0          0          0          1
与左扰动优化的姿态误差 dR=7.07704e-05
与左扰动优化的位置误差 dt=6.83382e-05
与EPNP姿态误差 dR=0.00242649
与EPNP位置误差 dt=0.00288342

不提供初始值(初始值为0)的情况下:

-- Max dist : 94.000000 
-- Min dist : 4.000000 
一共找到了79组匹配点
3d-2d pairs: 75
R=
[0, 0, 0;
 0, 0, 0;
 0, 0, 0]
t=
[0;
 0;
 0]
calling bundle adjustment
iteration= 0	 chi2= 5545636.870216	 time= 0.000435984	 cumTime= 0.000435984	 edges= 75	 schur= 1	 lambda= 8401867357611196416.000000	 levenbergIter= 10
optimization costs time: 0.000627261 seconds.

after optimization:
T=
 1  0  0  0
 0 -1  0  0
 0  0 -1  0
 0  0  0  1
与左扰动优化的姿态误差 dR=2.82814
与左扰动优化的位置误差 dt=0.141753
与EPNP姿态误差 dR=2.82817
与EPNP位置误差 dt=0.140666

三、把T展开后求Jacobin

为什么会对比这种方法呢?因为在《手写VIO》的课程中,他们是先将f展开成旋转矩阵+平移的形式,并对姿态和位置分别求导。

【李代数求偏导】SLAM中李代数SE3求偏导左扰动模型和右扰动模型的区别_第3张图片

也就是说,在我们上述讨论的模型(即SLAM十四讲中ch7的PNP模型)中,我们先将相机坐标系下特征点坐标展开 P ‘ = T c w ∗ P w = R c w ∗ f w + t P^`=Tcw*Pw=Rcw*fw+t P=TcwPw=Rcwfw+t其中 f w = [ X , Y , Z ] fw=[X,Y,Z] fw=[X,Y,Z]即特征点在世界坐标系下的坐标。

【李代数求偏导】SLAM中李代数SE3求偏导左扰动模型和右扰动模型的区别_第4张图片

【李代数求偏导】SLAM中李代数SE3求偏导左扰动模型和右扰动模型的区别_第5张图片

可以看到展开后无论是右扰动还是左扰动,都是与原来有一定差别的,或是在姿态上,或是在平移上,具体为什么产生这样的差异我还没弄太清楚。但是想想一个坐标系B相对于坐标系A运动,经过δt时间后,坐标系B的姿态变化了δa,位置变化了δb(即右扰动模型),如果对于位置的雅可比为单位矩阵,那么位置不应该发生变化。但是实际情况是 P A B P^{AB} PAB随姿态R不同而发生改变。这也解释了为什么前面求位置雅可比为R。

【李代数求偏导】SLAM中李代数SE3求偏导左扰动模型和右扰动模型的区别_第6张图片

下面我们仍然进行实验,用数据说话:

3.1右扰动+右乘更新

代码只需要修改MyEdgeProjectXYZ2UV::linearizeOplus()函数中对于位置的导数。

tmp_p.block(0, 3, 3, 3) = Eigen::Matrix3d::Identity(3,3);

提供EPNP初始值的情况下,输出结果为:

-- Max dist : 94.000000 
-- Min dist : 4.000000 
一共找到了79组匹配点
3d-2d pairs: 75
R=
[0.9979059095501264, -0.05091940089110115, 0.03988747043654633;
 0.0498186625425323, 0.998362315743816, 0.02812094175376019;
 -0.04125404886078842, -0.02607491352883862, 0.9988083912027648]
t=
[-0.1267821389558076;
 -0.008439496817513407;
 0.06034935748888434]
calling bundle adjustment
iteration= 0	 chi2= 0.153981	 time= 0.00222382	 cumTime= 0.00222382	 edges= 75	 schur= 1	 lambda= 71.408604	 levenbergIter= 1
iteration= 1	 chi2= 0.000885	 time= 4.4784e-05	 cumTime= 0.00226861	 edges= 75	 schur= 1	 lambda= 23.802868	 levenbergIter= 1
iteration= 2	 chi2= 0.000002	 time= 4.1207e-05	 cumTime= 0.00230981	 edges= 75	 schur= 1	 lambda= 15.868579	 levenbergIter= 1
iteration= 3	 chi2= 0.000000	 time= 4.0796e-05	 cumTime= 0.00235061	 edges= 75	 schur= 1	 lambda= 10.579052	 levenbergIter= 1
iteration= 4	 chi2= 0.000000	 time= 4.0666e-05	 cumTime= 0.00239128	 edges= 75	 schur= 1	 lambda= 7.052702	 levenbergIter= 1
iteration= 5	 chi2= 0.000000	 time= 4.0515e-05	 cumTime= 0.00243179	 edges= 75	 schur= 1	 lambda= 4.701801	 levenbergIter= 1
iteration= 6	 chi2= 0.000000	 time= 4.0295e-05	 cumTime= 0.00247209	 edges= 75	 schur= 1	 lambda= 3.134534	 levenbergIter= 1
iteration= 7	 chi2= 0.000000	 time= 4.0296e-05	 cumTime= 0.00251238	 edges= 75	 schur= 1	 lambda= 2.089689	 levenbergIter= 1
iteration= 8	 chi2= 0.000000	 time= 4.0335e-05	 cumTime= 0.00255272	 edges= 75	 schur= 1	 lambda= 1.393126	 levenbergIter= 1
iteration= 9	 chi2= 0.000000	 time= 4.0306e-05	 cumTime= 0.00259302	 edges= 75	 schur= 1	 lambda= 0.928751	 levenbergIter= 1
iteration= 10	 chi2= 0.000000	 time= 4.0496e-05	 cumTime= 0.00263352	 edges= 75	 schur= 1	 lambda= 0.619167	 levenbergIter= 1
iteration= 11	 chi2= 0.000000	 time= 4.0456e-05	 cumTime= 0.00267397	 edges= 75	 schur= 1	 lambda= 0.412778	 levenbergIter= 1
iteration= 12	 chi2= 0.000000	 time= 4.0265e-05	 cumTime= 0.00271424	 edges= 75	 schur= 1	 lambda= 0.275185	 levenbergIter= 1
iteration= 13	 chi2= 0.000000	 time= 4.0526e-05	 cumTime= 0.00275477	 edges= 75	 schur= 1	 lambda= 0.183457	 levenbergIter= 1
iteration= 14	 chi2= 0.000000	 time= 0.000152374	 cumTime= 0.00290714	 edges= 75	 schur= 1	 lambda= 256491.413538	 levenbergIter= 7
iteration= 15	 chi2= 0.000000	 time= 5.9101e-05	 cumTime= 0.00296624	 edges= 75	 schur= 1	 lambda= 341988.551384	 levenbergIter= 2
iteration= 16	 chi2= 0.000000	 time= 9.6972e-05	 cumTime= 0.00306321	 edges= 75	 schur= 1	 lambda= 350196276.617265	 levenbergIter= 4
optimization costs time: 0.00423397 seconds.

after optimization:
T=
  0.997848 -0.0510522  0.0411351  -0.128518
 0.0498677   0.998325  0.0293259 -0.0103897
-0.0425634 -0.0272115   0.998723  0.0590331
         0          0          0          1
与左扰动优化的姿态误差 dR=9.14896e-05
与左扰动优化的位置误差 dt=9.07626e-05
与EPNP姿态误差 dR=0.00245898
与EPNP位置误差 dt=0.00292396

不提供初始值(初始值为0)的情况下:

-- Max dist : 94.000000 
-- Min dist : 4.000000 
一共找到了79组匹配点
3d-2d pairs: 75
R=
[0, 0, 0;
 0, 0, 0;
 0, 0, 0]
t=
[0;
 0;
 0]
calling bundle adjustment
iteration= 0	 chi2= 5484482.653301	 time= 0.000167523	 cumTime= 0.000167523	 edges= 75	 schur= 1	 lambda= 326035364.127842	 levenbergIter= 7
iteration= 1	 chi2= 5411109.314310	 time= 2.9485e-05	 cumTime= 0.000197008	 edges= 75	 schur= 1	 lambda= 217356909.418561	 levenbergIter= 1
iteration= 2	 chi2= 5333174.533993	 time= 2.8423e-05	 cumTime= 0.000225431	 edges= 75	 schur= 1	 lambda= 144904606.279041	 levenbergIter= 1
iteration= 3	 chi2= 5266555.302930	 time= 2.8012e-05	 cumTime= 0.000253443	 edges= 75	 schur= 1	 lambda= 96603070.852694	 levenbergIter= 1
iteration= 4	 chi2= 5234122.025044	 time= 3.8953e-05	 cumTime= 0.000292396	 edges= 75	 schur= 1	 lambda= 64402047.235129	 levenbergIter= 1
iteration= 5	 chi2= 5232554.289042	 time= 5.2639e-05	 cumTime= 0.000345035	 edges= 75	 schur= 1	 lambda= 343477585.254023	 levenbergIter= 3
iteration= 6	 chi2= 5232378.323995	 time= 4.0416e-05	 cumTime= 0.000385451	 edges= 75	 schur= 1	 lambda= 457970113.672030	 levenbergIter= 2
iteration= 7	 chi2= 5232378.323995	 time= 0.000145913	 cumTime= 0.000531364	 edges= 75	 schur= 1	 lambda= 16500112266241431612424192.000000	 levenbergIter= 10
optimization costs time: 0.00104973 seconds.

after optimization:
T=
   0.997983  0.00518784    0.063265   0.0433475
 0.00574846   -0.999946 -0.00868262  0.00580473
  0.0632165  0.00902879   -0.997959   0.0564951
          0           0           0           1
与左扰动优化的姿态误差 dR=2.82832
与左扰动优化的位置误差 dt=0.172576
与EPNP姿态误差 dR=2.82833
与EPNP位置误差 dt=0.170768

3.2左扰动+左乘更新

修改MyEdgeProjectXYZ2UV::linearizeOplus()函数

void MyEdgeProjectXYZ2UV::linearizeOplus() {
  MyVertexSE3Expmap * vj = static_cast<MyVertexSE3Expmap *>(_vertices[1]);
  SE3Quat T(vj->estimate());
  VertexSBAPointXYZ* vi = static_cast<VertexSBAPointXYZ*>(_vertices[0]);
  Vector3D xyz = vi->estimate();
  Vector3D xyz_trans = T.map(xyz);

  double x = xyz_trans[0];
  double y = xyz_trans[1];
  double z = xyz_trans[2];
  double z_2 = z*z;

  const CameraParameters * cam = static_cast<const CameraParameters *>(parameter(0));

  Eigen::Matrix<double,2,3,Eigen::ColMajor> tmp;
  tmp(0,0) = cam->focal_length;
  tmp(0,1) = 0;
  tmp(0,2) = -x/z*cam->focal_length;

  tmp(1,0) = 0;
  tmp(1,1) = cam->focal_length;
  tmp(1,2) = -y/z*cam->focal_length;
  Eigen::Matrix3d tmp_R = T.rotation().toRotationMatrix();
  _jacobianOplusXi =  -1./z * tmp * T.rotation().toRotationMatrix();

  Eigen::Matrix<double,3,6,Eigen::ColMajor> tmp_p;
  // //右扰动
  // Eigen::Matrix3d tmp_fx;
  // tmp_fx << 0, -xyz[2], xyz[1], xyz[2], 0, -xyz[0], -xyz[1], xyz[0], 0;
  // tmp_p.block(0, 0, 3, 3) = -tmp_R * tmp_fx;//对姿态的雅可比 = -R[p]^
  // tmp_p.block(0, 3, 3, 3) = Eigen::Matrix3d::Identity(3,3);//对位置的雅可比 = I
  //左扰动
  xyz = tmp_R * xyz;
  Eigen::Matrix3d tmp_fx;
  tmp_fx << 0, -xyz[2], xyz[1], xyz[2], 0, -xyz[0], -xyz[1], xyz[0], 0;
  tmp_p.block(0, 0, 3, 3) = -tmp_fx;//对姿态的雅可比 = -[Rp]^
  tmp_p.block(0, 3, 3, 3) = Eigen::Matrix3d::Identity(3, 3);//对位置的雅可比 = I

  Eigen::Matrix<double,2,6,Eigen::ColMajor> jres = (-1./z * tmp * tmp_p);
  
  _jacobianOplusXj = jres;
 }

提供EPNP初始值的情况下,输出结果为:

-- Max dist : 94.000000 
-- Min dist : 4.000000 
一共找到了79组匹配点
3d-2d pairs: 75
R=
[0.9979059095501264, -0.05091940089110115, 0.03988747043654633;
 0.0498186625425323, 0.998362315743816, 0.02812094175376019;
 -0.04125404886078842, -0.02607491352883862, 0.9988083912027648]
t=
[-0.1267821389558076;
 -0.008439496817513407;
 0.06034935748888434]
calling bundle adjustment
iteration= 0	 chi2= 0.107897	 time= 0.000277378	 cumTime= 0.000277378	 edges= 75	 schur= 1	 lambda= 71.571421	 levenbergIter= 1
iteration= 1	 chi2= 0.000010	 time= 4.4954e-05	 cumTime= 0.000322332	 edges= 75	 schur= 1	 lambda= 23.857140	 levenbergIter= 1
iteration= 2	 chi2= 0.000000	 time= 4.2079e-05	 cumTime= 0.000364411	 edges= 75	 schur= 1	 lambda= 15.904760	 levenbergIter= 1
iteration= 3	 chi2= 0.000000	 time= 4.1667e-05	 cumTime= 0.000406078	 edges= 75	 schur= 1	 lambda= 10.603173	 levenbergIter= 1
iteration= 4	 chi2= 0.000000	 time= 4.1487e-05	 cumTime= 0.000447565	 edges= 75	 schur= 1	 lambda= 7.068782	 levenbergIter= 1
iteration= 5	 chi2= 0.000000	 time= 4.1006e-05	 cumTime= 0.000488571	 edges= 75	 schur= 1	 lambda= 4.712522	 levenbergIter= 1
iteration= 6	 chi2= 0.000000	 time= 4.1247e-05	 cumTime= 0.000529818	 edges= 75	 schur= 1	 lambda= 3.141681	 levenbergIter= 1
iteration= 7	 chi2= 0.000000	 time= 5.2287e-05	 cumTime= 0.000582105	 edges= 75	 schur= 1	 lambda= 2.094454	 levenbergIter= 1
iteration= 8	 chi2= 0.000000	 time= 4.1317e-05	 cumTime= 0.000623422	 edges= 75	 schur= 1	 lambda= 1.396303	 levenbergIter= 1
iteration= 9	 chi2= 0.000000	 time= 0.000134671	 cumTime= 0.000758093	 edges= 75	 schur= 1	 lambda= 30502.697347	 levenbergIter= 6
iteration= 10	 chi2= 0.000000	 time= 4.1417e-05	 cumTime= 0.00079951	 edges= 75	 schur= 1	 lambda= 20335.131565	 levenbergIter= 1
iteration= 11	 chi2= 0.000000	 time= 4.1237e-05	 cumTime= 0.000840747	 edges= 75	 schur= 1	 lambda= 13556.754376	 levenbergIter= 1
iteration= 12	 chi2= 0.000000	 time= 4.1197e-05	 cumTime= 0.000881944	 edges= 75	 schur= 1	 lambda= 9037.836251	 levenbergIter= 1
iteration= 13	 chi2= 0.000000	 time= 4.2129e-05	 cumTime= 0.000924073	 edges= 75	 schur= 1	 lambda= 18075.672502	 levenbergIter= 1
optimization costs time: 0.00186419 seconds.

after optimization:
T=
  0.997848 -0.0510596  0.0411281  -0.128508
 0.0498762   0.998325  0.0293041 -0.0103511
-0.0425555 -0.0271898   0.998724  0.0590491
         0          0          0          1
与左扰动优化的姿态误差 dR=6.46337e-05
与左扰动优化的位置误差 dt=5.86872e-05
与EPNP姿态误差 dR=0.00243119
与EPNP位置误差 dt=0.00288491

不提供初始值(初始值为0)的情况下:

-- Max dist : 94.000000 
-- Min dist : 4.000000 
一共找到了79组匹配点
3d-2d pairs: 75
R=
[0, 0, 0;
 0, 0, 0;
 0, 0, 0]
t=
[0;
 0;
 0]
calling bundle adjustment
iteration= 0	 chi2= 2491379.880680	 time= 0.000318896	 cumTime= 0.000318896	 edges= 75	 schur= 1	 lambda= 155.465777	 levenbergIter= 1
iteration= 1	 chi2= 2350261.880062	 time= 0.000102341	 cumTime= 0.000421237	 edges= 75	 schur= 1	 lambda= 6633.206464	 levenbergIter= 4
iteration= 2	 chi2= 2146578.676969	 time= 6.0533e-05	 cumTime= 0.00048177	 edges= 75	 schur= 1	 lambda= 8844.275286	 levenbergIter= 2
iteration= 3	 chi2= 309098.883977	 time= 5.1737e-05	 cumTime= 0.000533507	 edges= 75	 schur= 1	 lambda= 5604.495364	 levenbergIter= 1
iteration= 4	 chi2= 231829.063429	 time= 4.1257e-05	 cumTime= 0.000574764	 edges= 75	 schur= 1	 lambda= 3736.330243	 levenbergIter= 1
iteration= 5	 chi2= 36841.370280	 time= 4.1298e-05	 cumTime= 0.000616062	 edges= 75	 schur= 1	 lambda= 2490.886828	 levenbergIter= 1
iteration= 6	 chi2= 9989.648498	 time= 4.1357e-05	 cumTime= 0.000657419	 edges= 75	 schur= 1	 lambda= 1660.591219	 levenbergIter= 1
iteration= 7	 chi2= 1690.278853	 time= 4.1377e-05	 cumTime= 0.000698796	 edges= 75	 schur= 1	 lambda= 1107.060813	 levenbergIter= 1
iteration= 8	 chi2= 304.200216	 time= 4.1277e-05	 cumTime= 0.000740073	 edges= 75	 schur= 1	 lambda= 738.040542	 levenbergIter= 1
iteration= 9	 chi2= 48.131692	 time= 4.1157e-05	 cumTime= 0.00078123	 edges= 75	 schur= 1	 lambda= 492.027028	 levenbergIter= 1
iteration= 10	 chi2= 7.356415	 time= 4.1237e-05	 cumTime= 0.000822467	 edges= 75	 schur= 1	 lambda= 327.359356	 levenbergIter= 1
iteration= 11	 chi2= 1.071829	 time= 4.1247e-05	 cumTime= 0.000863714	 edges= 75	 schur= 1	 lambda= 210.999466	 levenbergIter= 1
iteration= 12	 chi2= 0.151844	 time= 4.1067e-05	 cumTime= 0.000904781	 edges= 75	 schur= 1	 lambda= 133.853278	 levenbergIter= 1
iteration= 13	 chi2= 0.021010	 time= 4.1317e-05	 cumTime= 0.000946098	 edges= 75	 schur= 1	 lambda= 85.541821	 levenbergIter= 1
iteration= 14	 chi2= 0.002863	 time= 4.1207e-05	 cumTime= 0.000987305	 edges= 75	 schur= 1	 lambda= 57.027881	 levenbergIter= 1
iteration= 15	 chi2= 0.000386	 time= 4.1247e-05	 cumTime= 0.00102855	 edges= 75	 schur= 1	 lambda= 38.018587	 levenbergIter= 1
iteration= 16	 chi2= 0.000052	 time= 4.1147e-05	 cumTime= 0.0010697	 edges= 75	 schur= 1	 lambda= 25.345725	 levenbergIter= 1
iteration= 17	 chi2= 0.000007	 time= 4.0876e-05	 cumTime= 0.00111058	 edges= 75	 schur= 1	 lambda= 16.897150	 levenbergIter= 1
iteration= 18	 chi2= 0.000001	 time= 4.1156e-05	 cumTime= 0.00115173	 edges= 75	 schur= 1	 lambda= 11.264767	 levenbergIter= 1
iteration= 19	 chi2= 0.000000	 time= 4.1116e-05	 cumTime= 0.00119285	 edges= 75	 schur= 1	 lambda= 7.509844	 levenbergIter= 1
iteration= 20	 chi2= 0.000000	 time= 4.2449e-05	 cumTime= 0.0012353	 edges= 75	 schur= 1	 lambda= 5.006563	 levenbergIter= 1
iteration= 21	 chi2= 0.000000	 time= 4.1377e-05	 cumTime= 0.00127667	 edges= 75	 schur= 1	 lambda= 3.337709	 levenbergIter= 1
iteration= 22	 chi2= 0.000000	 time= 4.1327e-05	 cumTime= 0.001318	 edges= 75	 schur= 1	 lambda= 2.225139	 levenbergIter= 1
iteration= 23	 chi2= 0.000000	 time= 4.0997e-05	 cumTime= 0.001359	 edges= 75	 schur= 1	 lambda= 1.483426	 levenbergIter= 1
iteration= 24	 chi2= 0.000000	 time= 4.1067e-05	 cumTime= 0.00140006	 edges= 75	 schur= 1	 lambda= 0.988951	 levenbergIter= 1
iteration= 25	 chi2= 0.000000	 time= 4.1147e-05	 cumTime= 0.00144121	 edges= 75	 schur= 1	 lambda= 0.659300	 levenbergIter= 1
iteration= 26	 chi2= 0.000000	 time= 4.1097e-05	 cumTime= 0.00148231	 edges= 75	 schur= 1	 lambda= 0.439534	 levenbergIter= 1
iteration= 27	 chi2= 0.000000	 time= 4.1067e-05	 cumTime= 0.00152337	 edges= 75	 schur= 1	 lambda= 0.293022	 levenbergIter= 1
iteration= 28	 chi2= 0.000000	 time= 4.1017e-05	 cumTime= 0.00156439	 edges= 75	 schur= 1	 lambda= 0.195348	 levenbergIter= 1
iteration= 29	 chi2= 0.000000	 time= 4.1027e-05	 cumTime= 0.00160542	 edges= 75	 schur= 1	 lambda= 0.130232	 levenbergIter= 1
iteration= 30	 chi2= 0.000000	 time= 4.1277e-05	 cumTime= 0.0016467	 edges= 75	 schur= 1	 lambda= 0.086821	 levenbergIter= 1
iteration= 31	 chi2= 0.000000	 time= 5.1576e-05	 cumTime= 0.00169827	 edges= 75	 schur= 1	 lambda= 0.057881	 levenbergIter= 1
iteration= 32	 chi2= 0.000000	 time= 4.1057e-05	 cumTime= 0.00173933	 edges= 75	 schur= 1	 lambda= 0.038587	 levenbergIter= 1
iteration= 33	 chi2= 0.000000	 time= 4.0807e-05	 cumTime= 0.00178014	 edges= 75	 schur= 1	 lambda= 0.025725	 levenbergIter= 1
iteration= 34	 chi2= 0.000000	 time= 4.0576e-05	 cumTime= 0.00182071	 edges= 75	 schur= 1	 lambda= 0.017150	 levenbergIter= 1
iteration= 35	 chi2= 0.000000	 time= 4.1187e-05	 cumTime= 0.0018619	 edges= 75	 schur= 1	 lambda= 0.011433	 levenbergIter= 1
iteration= 36	 chi2= 0.000000	 time= 4.1057e-05	 cumTime= 0.00190296	 edges= 75	 schur= 1	 lambda= 0.007622	 levenbergIter= 1
iteration= 37	 chi2= 0.000000	 time= 4.1007e-05	 cumTime= 0.00194396	 edges= 75	 schur= 1	 lambda= 0.005081	 levenbergIter= 1
iteration= 38	 chi2= 0.000000	 time= 4.1016e-05	 cumTime= 0.00198498	 edges= 75	 schur= 1	 lambda= 0.003388	 levenbergIter= 1
iteration= 39	 chi2= 0.000000	 time= 4.0976e-05	 cumTime= 0.00202595	 edges= 75	 schur= 1	 lambda= 0.002258	 levenbergIter= 1
iteration= 40	 chi2= 0.000000	 time= 4.0766e-05	 cumTime= 0.00206672	 edges= 75	 schur= 1	 lambda= 0.001506	 levenbergIter= 1
iteration= 41	 chi2= 0.000000	 time= 4.0967e-05	 cumTime= 0.00210769	 edges= 75	 schur= 1	 lambda= 0.001004	 levenbergIter= 1
iteration= 42	 chi2= 0.000000	 time= 4.1237e-05	 cumTime= 0.00214892	 edges= 75	 schur= 1	 lambda= 0.000669	 levenbergIter= 1
iteration= 43	 chi2= 0.000000	 time= 4.0646e-05	 cumTime= 0.00218957	 edges= 75	 schur= 1	 lambda= 0.000446	 levenbergIter= 1
iteration= 44	 chi2= 0.000000	 time= 4.0626e-05	 cumTime= 0.0022302	 edges= 75	 schur= 1	 lambda= 0.000297	 levenbergIter= 1
iteration= 45	 chi2= 0.000000	 time= 0.000169557	 cumTime= 0.00239975	 edges= 75	 schur= 1	 lambda= 53222.844307	 levenbergIter= 8
iteration= 46	 chi2= 0.000000	 time= 4.0826e-05	 cumTime= 0.00244058	 edges= 75	 schur= 1	 lambda= 35481.896205	 levenbergIter= 1
iteration= 47	 chi2= 0.000000	 time= 4.1106e-05	 cumTime= 0.00248169	 edges= 75	 schur= 1	 lambda= 23654.597470	 levenbergIter= 1
iteration= 48	 chi2= 0.000000	 time= 4.0676e-05	 cumTime= 0.00252236	 edges= 75	 schur= 1	 lambda= 15769.731647	 levenbergIter= 1
iteration= 49	 chi2= 0.000000	 time= 5.9401e-05	 cumTime= 0.00258176	 edges= 75	 schur= 1	 lambda= 21026.308862	 levenbergIter= 2
iteration= 50	 chi2= 0.000000	 time= 4.0987e-05	 cumTime= 0.00262275	 edges= 75	 schur= 1	 lambda= 14017.539241	 levenbergIter= 1
iteration= 51	 chi2= 0.000000	 time= 4.4683e-05	 cumTime= 0.00266743	 edges= 75	 schur= 1	 lambda= 28035.078483	 levenbergIter= 1
optimization costs time: 0.00590244 seconds.

after optimization:
T=
 0.936247 0.0629721 -0.345653  0.974379
 0.175357 -0.936262  0.304407 -0.498621
-0.304452 -0.345613 -0.887615  -2.23452
        0         0         0         1
与左扰动优化的姿态误差 dR=2.78006
与左扰动优化的位置误差 dt=2.59136
与EPNP姿态误差 dR=2.78033
与EPNP位置误差 dt=2.59216

你可能感兴趣的:(算法)