点击此处加入NVIDIA开发者计划
以下部分有助于回答有关 NVIDIA TensorRT 典型用例的最常见问题。
本部分旨在帮助解决问题并回答我们最常问的问题。
问:如何创建针对多种不同批次大小进行优化的引擎?
答:虽然 TensorRT 允许针对给定批量大小优化的引擎以任何较小的大小运行,但这些较小大小的性能无法得到很好的优化。要针对多个不同的批量大小进行优化,请在分配给OptProfilerSelector::kOPT
的维度上创建优化配置文件。
问:引擎和校准表是否可以跨TensorRT版本移植?
答:不会。内部实现和格式会不断优化,并且可以在版本之间更改。因此,不保证引擎和校准表与不同版本的TensorRT二进制兼容。使用新版本的TensorRT时,应用程序必须构建新引擎和 INT8 校准表。
问:如何选择最佳的工作空间大小?
答:一些 TensorRT 算法需要 GPU 上的额外工作空间。方法IBuilderConfig::setMemoryPoolLimit()
控制可以分配的最大工作空间量,并防止构建器考虑需要更多工作空间的算法。在运行时,创建IExecutionContext
时会自动分配空间。即使在IBuilderConfig::setMemoryPoolLimit()
中设置的数量要高得多,分配的数量也不会超过所需数量。因此,应用程序应该允许 TensorRT 构建器尽可能多的工作空间;在运行时,TensorRT 分配的数量不超过这个,通常更少。
问:如何在多个 GPU 上使用TensorRT ?
答:每个ICudaEngine
对象在实例化时都绑定到特定的 GPU,无论是由构建器还是在反序列化时。要选择 GPU,请在调用构建器或反序列化引擎之前使用cudaSetDevice()
。每个IExecutionContext
都绑定到与创建它的引擎相同的 GPU。调用execute()
或enqueue()
时,如有必要,请通过调用cudaSetDevice()
确保线程与正确的设备相关联。
问:如何从库文件中获取TensorRT的版本?
A: 符号表中有一个名为tensorrt_version_#_#_#_#
的符号,其中包含TensorRT版本号。在 Linux 上读取此符号的一种可能方法是使用nm命令,如下例所示:
$ nm -D libnvinfer.so.* | grep tensorrt_version
00000000abcd1234 B tensorrt_version_#_#_#_#
问:如果我的网络产生了错误的答案,我该怎么办?
答:您的网络生成错误答案的原因有多种。以下是一些有助于诊断问题的故障排除方法:
注意:将张量标记为输出会抑制优化,因此会改变结果。
您可以使用Polygraphy来帮助您进行调试和诊断。
问:如何在TensorRT中实现批量标准化?
答:批量标准化可以使用TensorRT中的IElementWiseLayer
序列来实现。进一步来说:
adjustedScale = scale / sqrt(variance + epsilon)
batchNorm = (input + bias - (adjustedScale * mean)) * adjustedScale
问:为什么我的网络在使用 DLA 时比不使用 DLA 时运行得更慢?
答:DLA 旨在最大限度地提高能源效率。根据 DLA 支持的功能和 GPU 支持的功能,任何一种实现都可以提高性能。使用哪种实现取决于您的延迟或吞吐量要求以及您的功率预算。由于所有 DLA 引擎都独立于 GPU 并且彼此独立,因此您还可以同时使用这两种实现来进一步提高网络的吞吐量。
问:TensorRT支持INT4量化还是INT16量化?
答:TensorRT 目前不支持 INT4 和 INT16 量化。
问:TensorRT 何时会在 UFF 解析器中支持我的网络所需的层 XYZ?
答:UFF 已弃用。我们建议用户将他们的工作流程切换到 ONNX。 TensorRT ONNX 解析器是一个开源项目。
问:我可以使用多个 TensorRT 构建器在不同的目标上进行编译吗?
答:TensorRT 假设它所构建的设备的所有资源都可用于优化目的。同时使用多个 TensorRT 构建器(例如,多个trtexec
实例)在不同的目标(DLA0
、DLA1
和 GPU)上进行编译可能会导致系统资源超额订阅,从而导致未定义的行为(即计划效率低下、构建器失败或系统不稳定)。
建议使用带有 --saveEngine
参数的trtexec
分别为不同的目标(DLA 和 GPU)编译并保存它们的计划文件。然后可以重用此类计划文件进行加载(使用带有 --loadEngine
参数的trtexec
)并在各个目标(DLA0、DLA1、GPU
)上提交多个推理作业。这个两步过程在构建阶段缓解了系统资源的过度订阅,同时还允许计划文件的执行在不受构建器干扰的情况下继续进行。
问:张量核心(tensor core)加速了哪些层?
大多数数学绑定运算将通过张量核(tensor core)加速 - 卷积、反卷积、全连接和矩阵乘法。在某些情况下,特别是对于小通道数或小组大小,另一种实现可能更快并且被选择而不是张量核心实现。
如果在执行过程中遇到错误,TensorRT 会报告一条错误消息,旨在帮助调试问题。以下部分讨论了开发人员可能遇到的一些常见错误消息。
UFF 解析器错误消息
下表捕获了常见的 UFF 解析器错误消息。
Error Message | Description |
---|---|
The input to the Scale Layer is required to have a minimum of 3 dimensions. |
This error message can occur due to incorrect input dimensions. In UFF, input dimensions should always be specified with the implicit batch dimension not included in the specification. |
Invalid scale mode, nbWeights: |
|
kernel weights has count |
|
|
As indicated by the error message, the axis must be a build-time constant in order for UFF to parse the node correctly. |
ONNX 解析器错误消息
下表捕获了常见的 ONNX 解析器错误消息。有关特定 ONNX 节点支持的更多信息,请参阅 operators支持文档。
Error Message | Description |
---|---|
These error messages signify that an ONNX node input tensor is expected to be an initializer in TensorRT. A possible fix is to run constant folding on the model using TensorRT’s Polygraphy tool:polygraphy surgeon sanitize model.onnx --fold-constants --output model_folded.onnx |
|
!inputs.at(X).is_weights() | |
getPluginCreator() could not find Plugin |
This is an error stating that the ONNX parser does not have an import function defined for a particular operator, and did not find a corresponding plugin in the loaded registry for the operator. |
TensorRT 核心库错误消息
下表捕获了常见的 TensorRT 核心库错误消息。
Error Message | Description | |
---|---|---|
Installation Errors | Cuda initialization failure with error . Please check cuda installation: http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html. |
This error message can occur if the CUDA or NVIDIA driver installation is corrupt. Refer to the URL for instructions on installing CUDA and the NVIDIA driver on your operating system. |
Builder Errors | Internal error: could not find any implementation for node |
This error message occurs because there is no layer implementation for the given node in the network that can operate with the given workspace size. This usually occurs because the workspace size is insufficient but could also indicate a bug. If increasing the workspace size as suggested doesn’t help, report a bug (refer to How Do I Report A Bug?). |
|
This error message occurs when there is a mismatch between the values and count fields in a Weights data structure passed to the builder. If the count is 0, then the values field must contain a null pointer; otherwise, the count must be non-zero, and values must contain a non-null pointer. | |
Builder was created on device different from current device. | This error message can show up if you:
|
|
You can encounter error messages indicating that the tensor dimensions do not match the semantics of the given layer. Carefully read the documentation on NvInfer.h on the usage of each layer and the expected dimensions of the tensor inputs and outputs to the layer. | ||
INT8 Calibration Errors | Tensor |
This warning occurs and should be treated as an error when data distribution for a tensor is uniformly zero. In a network, the output tensor distribution can be uniformly zero under the following scenarios:
|
Could not find scales for tensor |
This error message indicates that a calibration failure occurred with no scaling factors detected. This could be due to no INT8 calibrator or insufficient custom scales for network layers. For more information, refer to sampleINT8 located in the opensource/sampleINT8 directory in the GitHub repository to set up calibration correctly. | |
The engine plan file is not compatible with this version of TensorRT, expecting (format|library) version |
This error message can occur if you are running TensorRT using an engine PLAN file that is incompatible with the current version of TensorRT. Ensure you use the same version of TensorRT when generating the engine and running it. | |
The engine plan file is generated on an incompatible device, expecting compute |
This error message can occur if you build an engine on a device of a different compute capability than the device that is used to run the engine. | |
Using an engine plan file across different models of devices is not recommended and is likely to affect performance or even cause errors. |
This warning message can occur if you build an engine on a device with the same compute capability but is not identical to the device that is used to run the engine. As indicated by the warning, it is highly recommended to use a device of the same model when generating the engine and deploying it to avoid compatibility issues. |
|
GPU memory allocation failed during initialization of (tensor|layer): |
These error messages can occur if there is insufficient GPU memory available to instantiate a given TensorRT engine. Verify that the GPU has sufficient available memory to contain the required layer weights and activation tensors. | |
Allocation failed during deserialization of weights. |
||
GPU does not meet the minimum memory requirements to run this engine … |
||
Network needs native FP16 and platform does not have native FP16 |
This error message can occur if you attempt to deserialize an engine that uses FP16 arithmetic on a GPU that does not support FP16 arithmetic. You either need to rebuild the engine without FP16 precision inference or upgrade your GPU to a model that supports FP16 precision inference. | |
Custom layer |
This error message can occur if the initialize() method of a given plugin layer returns a non-zero value. Refer to the implementation of that layer to debug this error further. For more information, refer to TensorRT Layers. |
Google sanitizers 是一组代码分析工具。
Sanitizer
存在一个已知问题,在此处记录。在 sanitizer
下在 TensorRT 上使用dlopen
时,会报告内存泄漏,除非采用以下两种解决方案之一:
Sanitizer
下运行时不要调用dlclose
。RTLD_NODELETE
传递给dlopen
。从多个线程使用dlopen
时,线程清理程序可以列出错误。为了抑制此警告,请创建一个名为tsan.supp
的文件并将以下内容添加到文件中:
race::dlopen
在 thread sanitizer 下运行应用程序时,使用以下命令设置环境变量:
export TSAN_OPTIONS=”suppressions=tsan.supp”
在此处记录的 CUDA 应用程序中存在一个已知问题。为了在地址清理器下成功运行 CUDA 库(例如 TensorRT),请将选项protect_shadow_gap=0
添加到ASAN_OPTIONS
环境变量中。
在 CUDA 11.4 上,有一个已知错误可能会在地址清理程序中触发不匹配的分配和释放错误。将alloc_dealloc_mismatch=0
添加到ASAN_OPTIONS
以禁用这些错误。
UndefinedBehaviorSanitizer (UBSan)使用 -fvisibility=hidden
选项报告误报,如此处所述。您必须添加-fno-sanitize=vptr
选项以避免 UBSan
报告此类误报。
Valgrind
是一个动态分析工具框架,可用于自动检测应用程序中的内存管理和线程错误。
某些版本的 valgrind
和 glibc
受到错误的影响,该错误会导致在使用dlopen
时报告错误的内存泄漏,这可能会在 valgrind
的memcheck
工具下运行 TensorRT 应用程序时产生虚假错误。要解决此问题,请将以下内容添加到此处记录的 valgrind
抑制文件中:
{
Memory leak errors with dlopen
Memcheck:Leak
match-leak-kinds: definite
...
fun:*dlopen*
...
}
在 CUDA 11.4 上,有一个已知错误可能会在 valgrind
中触发不匹配的分配和释放错误。将选项--show-mismatched-frees=no
添加到 valgrind
命令行以抑制这些错误。
在计算清理程序下运行 TensorRT 应用程序时, cuGetProcAddress可能会因缺少函数而失败,错误代码为 500。可以使用--report-api-errors no
选项忽略或抑制此错误。这是由于 CUDA 向后兼容性检查功能是否可用于 CUDA 工具包/驱动程序组合。这些功能在 CUDA 的更高版本中引入,但在当前平台上不可用。