python代码转换为pytorch_python – Pytorch:将FloatTensor转换为DoubleTensor

我有2个numpy数组,我将其转换为张量以使用TensorDataset对象.

import torch.utils.data as data_utils

X = np.zeros((100,30))

Y = np.zeros((100,30))

train = data_utils.TensorDataset(torch.from_numpy(X).double(), torch.from_numpy(Y))

train_loader = data_utils.DataLoader(train, batch_size=50, shuffle=True)

当我做:

for batch_idx, (data, target) in enumerate(train_loader):

data, target = Variable(data), Variable(target)

optimizer.zero_grad()

output = model(data) # error occurs here

我得到了以下错误:

TypeError: addmm_ received an invalid combination of arguments – got (int, int, torch.DoubleTensor, torch.FloatTensor), but expected one of:

[…]

* (float beta, float alpha, torch.DoubleTensor mat1, torch.DoubleTensor mat2)

didn’t match because some of the arguments have invalid types: (int, int, torch.DoubleTensor, torch.FloatTensor)

* (float beta, float alpha, torch.SparseDoubleTensor mat1, torch.DoubleTensor mat2)

didn’t match because some of the arguments have invalid types: (int, int, torch.DoubleTensor, torch.FloatTensor)

最后一个错误来自:

output.addmm_(0, 1, input, weight.t())

正如你在我的代码中看到的那样,我尝试使用.double()来转换张量 – 但这不起作用.为什么他将一个数组转换为FloatTensor对象而另一个数组转换为DoubleTensor?

有任何想法吗?

你可能感兴趣的:(python代码转换为pytorch_python – Pytorch:将FloatTensor转换为DoubleTensor)