写在前面:关于Deconvolution 与Transposed Convolution的字面上的区别,在此不再讨论,以下统称为Deconvolution,可参考http://blog.csdn.net/u013250416/article/details/78247818。在我的理解里面,Convolution是将大尺寸的feature map转换为小尺寸的feature map,而Deconvolution是将小尺寸的feature map转换为大尺寸的feature map。下面就介绍一下Caffe中DeconvolutionLayer的用法。
1.定义
在github上最新的caffe版本中,已经包含了DeconvolutionLayer。见src/caffe/layers/deconv_layer.cpp,deconv_layer.cu和 include/caffe/layers/deconv_layer.hpp,与ConvolutionLayer的区别在于output_shape的计算。
对于convolution:
output = (input + 2 * p - k) / s + 1;
对于deconvolution:
output = (input - 1) * s + k - 2 * p;
conv_layer.cpp:
template
void ConvolutionLayer::compute_output_shape() {
const int* kernel_shape_data = this->kernel_shape_.cpu_data();
const int* stride_data = this->stride_.cpu_data();
const int* pad_data = this->pad_.cpu_data();
const int* dilation_data = this->dilation_.cpu_data();
this->output_shape_.clear();
for (int i = 0; i < this->num_spatial_axes_; ++i) {
// i + 1 to skip channel axis
const int input_dim = this->input_shape(i + 1);
const int kernel_extent = dilation_data[i] * (kernel_shape_data[i] - 1) + 1;
const int output_dim = (input_dim + 2 * pad_data[i] - kernel_extent)
/ stride_data[i] + 1;
this->output_shape_.push_back(output_dim);
}
}
deconv_layer.cpp:
template
void DeconvolutionLayer::compute_output_shape() {
const int* kernel_shape_data = this->kernel_shape_.cpu_data();
const int* stride_data = this->stride_.cpu_data();
const int* pad_data = this->pad_.cpu_data();
const int* dilation_data = this->dilation_.cpu_data();
this->output_shape_.clear();
for (int i = 0; i < this->num_spatial_axes_; ++i) {
// i + 1 to skip channel axis
const int input_dim = this->input_shape(i + 1);
const int kernel_extent = dilation_data[i] * (kernel_shape_data[i] - 1) + 1;
const int output_dim = stride_data[i] * (input_dim - 1)
+ kernel_extent - 2 * pad_data[i];
this->output_shape_.push_back(output_dim);
}
}
在使用Python中的NetSpec生成network prototxt的时候,layers.Deconvolution不能接受其他参数,只能通过显式的convolution_param的方式来实现。
否则,如果按照ConvolutionLayer的方式来传递参数,可能会报错:AttributeError: 'LayerParameter' object has no attribute 'stride'。可以参考:https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/voc-fcn32s/net.py#L58-L61
ConvlutionLayer:
conv = L.Convolution(relu, kernel_size=ks, stride=stride,
num_output=nout, pad=pad, bias_term=False, weight_filler=dict(type='xavier'),
bias_filler=dict(type='constant'))
conv = L.Deconvolution(relu, convolution_param=dict(kernel_size=ks, stride=stride,
num_output=nout, pad=pad, bias_term=False, weight_filler=dict(type='xavier'),
bias_filler=dict(type='constant')))
3.Caffe.proto配置
在Caffe.proto中,没有配置DeconvolutionParameter.
可添加如下:
在LayerParameter中:
message LayerParameter {
......
optional ConvolutionParameter convolution_param = 106;
// Deconvolution
optional DeconvolutionParameter deconvolution_param = 147;
......
}
添加message DeconvolutionParameter:
message DeconvolutionParameter {
optional uint32 num_output = 1; // The number of outputs for the layer
optional bool bias_term = 2 [default = true]; // whether to have bias terms
// Pad, kernel size, and stride are all given as a single value for equal
// dimensions in all spatial dimensions, or once per spatial dimension.
repeated uint32 pad = 3; // The padding size; defaults to 0
repeated uint32 kernel_size = 4; // The kernel size
repeated uint32 stride = 6; // The stride; defaults to 1
// Factor used to dilate the kernel, (implicitly) zero-filling the resulting
// holes. (Kernel dilation is sometimes referred to by its use in the
// algorithme à trous from Holschneider et al. 1987.)
repeated uint32 dilation = 18; // The dilation; defaults to 1
// For 2D convolution only, the *_h and *_w versions may also be used to
// specify both spatial dimensions.
optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only)
optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only)
optional uint32 kernel_h = 11; // The kernel height (2D only)
optional uint32 kernel_w = 12; // The kernel width (2D only)
optional uint32 stride_h = 13; // The stride height (2D only)
optional uint32 stride_w = 14; // The stride width (2D only)
optional uint32 group = 5 [default = 1]; // The group size for group conv
optional FillerParameter weight_filler = 7; // The filler for the weight
optional FillerParameter bias_filler = 8; // The filler for the bias
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 15 [default = DEFAULT];
// The axis to interpret as "channels" when performing convolution.
// Preceding dimensions are treated as independent inputs;
// succeeding dimensions are treated as "spatial".
// With (N, C, H, W) inputs, and axis == 1 (the default), we perform
// N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for
// groups g>1) filters across the spatial axes (H, W) of the input.
// With (N, C, D, H, W) inputs, and axis == 1, we perform
// N independent 3D convolutions, sliding (C/g)-channels
// filters across the spatial axes (D, H, W) of the input.
optional int32 axis = 16 [default = 1];
// Whether to force use of the general ND convolution, even if a specific
// implementation for blobs of the appropriate number of spatial dimensions
// is available. (Currently, there is only a 2D-specific convolution
// implementation; for input blobs with num_axes != 2, this option is
// ignored and the ND implementation will be used.)
optional bool force_nd_im2col = 17 [default = false];
}