毕业设计需要自己采集RGB图像和深度图像,就在咸鱼上面淘到了一个RGBD摄像机,230块钱。在使用过程中走了一些弯路,在这分享以下,为后来人提个醒。文章后面会分享完整的C++代码,文章里面也会介绍到python的方法。
由于摄像头硬件问题,官方给的软件也无法同时采集深度和彩色图像,所以只能自己写程序。深度图的采集使用OpenNI框架,彩色图像使用OpenCV。
单纯采集深度图和RGB图像可以直接使用python,分别调用opencv库和openni库就行,其中openni库就是C++函数库的python封装。程序可以参考这篇文章,具体代码就自己看吧,openni的包直接可以在奥比中光的官网下载。
python虽然封装的比较号,但是在使用硬件配准的时候,传值总是报错。不知道是不是一代比较垃圾的原因。但是使用C++编写采集程序的时候就可以使用硬件配准。
下面是C++采集图像的完整程序:
//test.cpp
#include
#include
#include
#include
#include
#include
#include "OpenNI.h"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include
#include
using namespace std;
using namespace cv;
using namespace openni;
void writeMatToXML(const std::string xmlName, const cv::Mat & mat)
{
FileStorage fs(xmlName, FileStorage::WRITE);
fs << "Mat" << mat;
fs.release();
};
void CheckOpenNIError( Status result, string status )
{
if( result != STATUS_OK )
cerr << status << " Error: " << OpenNI::getExtendedError() << endl;
};
class ScenceNumber
{
// use a file(number.txt) to recoder different scence
public:
int scNum;
string fileName = "./data/number.txt";
ScenceNumber()
{
ifstream f;
f.open(this->fileName);
if(f.good())
{
stringstream cvStr;
string tmpStr;
getline(f, tmpStr);
cvStr << tmpStr;
cvStr >> this->scNum;
f.close();
}
else
{
ofstream f(this->fileName);
f << "0" << endl;
this->scNum = 0;
f.close();
}
}
string getNum()
{
ofstream f(this->fileName);
stringstream cvStr;
string tmpStr;
this->scNum ++;
cvStr << this->scNum;
cvStr >> tmpStr;
f << tmpStr << endl;
f.close();
cvStr >> tmpStr;
return tmpStr;
}
};
int main( int argc, char** argv )
{
Status result = STATUS_OK;
ScenceNumber ScN;
string baseFilePath = "./data";
string filePath;
char autoFlag = 0;
//OpenNI2 image
VideoFrameRef oniDepthImg;
//VideoFrameRef oniColorImg;
//OpenCV image
cv::Mat cvDepthImg;
cv::Mat cvBGRImg;
cv::Mat cvFusionImg;
cv::namedWindow("depth");
cv::namedWindow("image");
cv::namedWindow("fusion");
char key=0;
//【1】
// initialize OpenNI2
result = OpenNI::initialize();
CheckOpenNIError( result, "initialize context" );
// open device
Device device;
result = device.open( openni::ANY_DEVICE );
//【2】
// create depth stream
VideoStream oniDepthStream;
result = oniDepthStream.create( device, openni::SENSOR_DEPTH );
//【3】
// set depth video mode
VideoMode modeDepth;
modeDepth.setResolution( 640, 480 );
modeDepth.setFps( 30 );
modeDepth.setPixelFormat( PIXEL_FORMAT_DEPTH_1_MM );
oniDepthStream.setVideoMode(modeDepth);
// start depth stream
result = oniDepthStream.start();
create color stream
VideoCapture capture;
capture.open(0);
capture.set(3, 640); //set the rgb size
capture.set(4, 480);
//【4】
set depth and color imge registration mode
if( device.isImageRegistrationModeSupported(IMAGE_REGISTRATION_DEPTH_TO_COLOR ) )
{
device.setImageRegistrationMode( IMAGE_REGISTRATION_DEPTH_TO_COLOR );
}
long numInSc;
while( key!=27 )
{
if (key == 'g')
{
//generate the path
if (not autoFlag)
{
filePath = baseFilePath + "/scence" + ScN.getNum();
mkdir(filePath.c_str(), 0777);
numInSc = 0;
autoFlag = 1;
cout << filePath << endl;
}
}
if (key == 's')
{
//generate the path
if (autoFlag)
{
numInSc = 0;
autoFlag = 0;
cout << "scence over" << endl;
}
}
// read frame
if( oniDepthStream.readFrame( &oniDepthImg ) == STATUS_OK )
{
capture >> cvBGRImg;
cv::Mat cvRawImg16U( oniDepthImg.getHeight(), oniDepthImg.getWidth(), CV_16UC1, (void*)oniDepthImg.getData() );
cvRawImg16U.convertTo(cvDepthImg, CV_8U, 255.0/(oniDepthStream.getMaxPixelValue()));
cv::flip(cvDepthImg, cvDepthImg, 1);
//【5】
// convert depth image GRAY to BGR
cv::cvtColor(cvDepthImg,cvFusionImg,COLOR_GRAY2BGR);
cv::imshow( "depth", cvDepthImg );
cv::imshow( "image", cvBGRImg );
if(autoFlag) //auto take photos
{
stringstream cvt;
string SNumInSc;
cvt << numInSc;
cvt >> SNumInSc;
writeMatToXML(filePath + "/" + SNumInSc + ".xml", cvRawImg16U);
cv::imwrite(filePath + "/" + SNumInSc + ".jpg", cvBGRImg);
cout << SNumInSc << " " << numInSc << " saved" << endl;
numInSc ++;
}
}
//【6】
cv::addWeighted(cvBGRImg,0.5,cvFusionImg,0.5,0,cvFusionImg);
cv::imshow( "fusion", cvFusionImg );
key = cv::waitKey(100);
}
//cv destroy
cv::destroyWindow("depth");
cv::destroyWindow("image");
cv::destroyWindow("fusion");
//OpenNI2 destroy
oniDepthStream.destroy();
capture.release();
device.close();
OpenNI::shutdown();
return 0;
}
CMake文件如下:
# cmake needs this line
cmake_minimum_required(VERSION 3.1)
# Enable C++11
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED TRUE)
# Define project name
project(data_capture)
# Find OpenCV, you may need to set OpenCV_DIR variable
# to the absolute path to the directory containing OpenCVConfig.cmake file
# via the command line or GUI
INCLUDE_DIRECTORIES($ENV{OPENNI2_INCLUDE})
link_directories($ENV{OPENNI2_REDIST})
find_package(OpenCV REQUIRED)
# If the package has been found, several variables will
# be set, you can find the full list with descriptions
# in the OpenCVConfig.cmake file.
# Print some message showing some of them
message(STATUS "OpenCV library status:")
message(STATUS " config: ${OpenCV_DIR}")
message(STATUS " version: ${OpenCV_VERSION}")
message(STATUS " libraries: ${OpenCV_LIBS}")
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
message(STATUS " include path: $ENV{OPENNI2_INCLUDE}")
# Declare the executable target built from your sources
add_executable(data_capture test.cpp)
# Link your application with OpenCV libraries
target_link_libraries(data_capture LINK_PRIVATE ${OpenCV_LIBS} libOpenNI2.so)
其中需要注意的是,RGB读取和深度读取的顺序不能调换,否则会出现不同步。这里的深度图保存为.xml格式是为了后面python直接调用。其实可以保存为16bit深度的无损png图片,文件会小很多。(因为开始做的时候不知道,所以浪费了很多是时间。。。)
代码中展示的是完成的采集程序,程序可以以固定频率不间断采集多个不同场景的数据。
配准有软配准和硬件配准两种方式,由于本人比较菜,软件配准方向方向搞错了,所以没搞出来。因此上面程序中device.setImageRegistrationMode(IMAGE_REGISTRATION_DEPTH_TO_COLOR);
就是配准操作。这样摄像头就可以直接输出配准后的图像。结果我就不展示了。
据说软件配准做出来的效果更好,大佬您可以试一试。
一代相机虽然参数写入了内部存储,但是,哎!你用SDK读不出来。。。所以只能自己标定。网上有很多方法了,比如opencv,matlab等等。这里推荐的方法是这篇文章。虽然通用性差,但是快,方便就是硬道理。
以上就是我的分享,欢迎批评指正!