NSFC: 国内外研究现状的几种节奏

摘要: 项目的国内外研究现状比论文的文献综述更加要宽一些. 本贴描述几种常用的节奏.

1. 按发展阶段

  • 例 1 (油气田开发) 油田气开发经历了四个阶段: 传统阶段 (1900–1990), 自动化阶段(1991–2000), 智能化阶段 (2001–2012), 智慧化阶段 (2013–).
    优点: 时间线明确, 资料容易整理;
    缺点: 很多阶段其实有重叠, 特别是人工智能发展很快, 不可能等着上一个阶段结束, 下一个阶段才慢慢开始.
    因此这种写法多见于比较老的申请书 (2010 年前).

2. 按技术流派

  • 例 2 (油田产量预测) 油田产量预测技术大致可分为三大类: 基于衰减函数的方法, 基于多时序回归的方法, 基于深度学习 RNN/LSTM 的方法.
    分析:
    优点: 从方法入手, 很容易把参考文献进行定位. 每个流派又可以分为小类别, 或者按时间线来描述. 这也是最常用的写法.
    缺点: 为自己方法做的铺垫不太够. 比如自己的方法属于其中一个流派, 对别的流派说多/说少都不好. 可以当作一个注意事项吧, 不定能称之为 “缺点”.

3. 按数据特点

  • 例 3 (智慧旅游) 为了向游客进行合理的旅游线路推荐, 智慧旅游需要采集、分析、挖掘关于游客、景点、食宿的数据, 它们具有多时序、季节性、不均衡等特点. 已有工作在这些方面开展了深入的研究. 针对多时序, xxx. 针对季节性, xxx, 针对不均衡 (景点游客、酒店入住率), xxx.
    优点:
    a) 从数据的特点, 可以抓住事情的本质. 数据挖掘/机器学习/人工智能就是要靠数据说话, 把数据转换成信息, 进一步转化为知识.
    b) 为自己的研究内容作好铺垫. 很有可能自己的内容涵盖了所有的这几个方面.
    缺点: 仅适用有最终系统的项目, 对算法研究之类的项目就不大合适, 因为它们要适用于各类数据.

4. 小结

可能还有其它节奏.

你可能感兴趣的:(项目申请,深度学习,人工智能)