- Python 的 ORM(Object-Relational Mapping)工具浅讲
Code_Geo
python开发语言
SQLAlchemy相关讲解1.SQLAlchemy是什么?定义:一个Python的ORM(Object-RelationalMapping)工具,允许开发者通过Python类与对象操作数据库,而非直接编写SQL。核心组件:Core:底层SQL表达式语言,提供数据库无关的SQL操作接口。ORM:基于Core的高层抽象,将数据库表映射为Python类(模型),记录映射为对象。适用场景:需要灵活操作数
- 人工智能(AI)系统化学习路线
xiaoyu❅
python人工智能学习
一、为什么需要系统化学习AI?人工智能技术正在重塑各行各业,但许多初学者容易陷入误区:❌盲目跟风:直接学习TensorFlow/PyTorch,忽视数学与算法基础。❌纸上谈兵:只看理论不写代码,无法解决实际问题。❌方向模糊:对CV/NLP/RL等细分领域缺乏认知,难以针对性提升。正确的学习姿势:“金字塔式”分层学习(理论→算法→框架→应用→工程化),逐步构建完整的AI知识体系。二、人工智能学习路线
- #Python 项目:实现功能——使用钉钉“自定义”机器人在群中发送文字消息
Window Unlock
钉钉python机器人
(目前还是新手,程序难免有废话代码,请大家耐心看__比心)第一步:创建群聊机器人,参考官方手册官方链接:自定义机器人的创建和安装-钉钉开放平台此步骤可以得到两个关键参数:Webhook(机器人的通信网址):https://oapi.dingtalk.com/robot/send?############(如这样)secret(加签未解密密钥):SECe2######################
- 深度学习-130-RAG技术之基于Anything LLM搭建本地私人知识库的应用策略问题总结(一)
皮皮冰燃
深度学习深度学习人工智能RAG
文章目录1AnythingLLM的本地知识库1.1本地知识库应用场景1.2效果对比及思考1.3本地体现在哪些方面1.3.1知识在本地1.3.2分割后的文档在本地1.3.3大模型部署运行在本地2问错问题带来的问题2.1常见的问题2.2原因分析3为什么LLM不使用我的文件?3.1LLM不是万能的【omnipotent】3.2LLM不会自省【introspect】3.3AnythingLLM是如何工作的
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- Python-有效字母异位词
m0_37763377
python哈希算法算法数据结构
一、什么是字母异位词字母异位词是指由相同字母组成但排列顺序不同的单词。例如,"eat"、"tea"和"ate"都是字母异位词,因为它们由相同的字母组成,只是排列顺序不同。二、思路(一)暴力解法这里可以用两层循环来判断2个字符串的元素是否一样,显然时间复杂度为O(n²),在这里大家可以自己写一下,文章就不再提供演示。(二)哈希表解法1.什么是哈希表?哈希表(HashTable),也称为散列表,是
- LeetCode56☞合并区间
fantasy_4
LeetCode刷题leetcodepythonjava算法贪心算法
关联LeetCode题号56本题特点贪心本题思路将二维数组排序按照左边界排序。排序后,右边界的大小成为找到局部最大值的关键。由题意合并区间可知,应该取数组的’并集‘,局部最优解推出全局最优解,每次找到局部最大的范围,整体就会合并成一个大区间Python写法defmerge(self,intervals):result=[]iflen(intervals)==0:returnresult#区间集合为
- 【python】图形用户界面和游戏开发
usp1994
pythonuiide
图形用户界面和游戏开发文章目录图形用户界面和游戏开发基于tkinter模块的GUI使用Pygame进行游戏开发制作游戏窗口在窗口中绘图加载图像实现动画效果碰撞检测事件处理基于tkinter模块的GUIGUI是图形用户界面的缩写,图形化的用户界面对使用过计算机的人来说应该都不陌生,在此也无需进行赘述。Python默认的GUI开发模块是tkinter(在Python3以前的版本中名为Tkinter),
- Python 爬虫实战:如何爬取小红书数据并进行分析
Python爬虫项目
python爬虫开发语言selenium测试工具
一、引言随着社交电商的崛起,小红书(Xiaohongshu)作为一款结合了社交和电商的应用,吸引了大量年轻用户。用户在平台上分享购物心得、生活经验以及个性化的消费推荐内容,形成了庞大的用户数据与内容生态。因此,如何从小红书获取数据进行分析,成为了数据科学、市场营销和社交媒体研究中的一个重要课题。本文将介绍如何使用Python编写爬虫爬取小红书的数据,分析如何通过小红书的开放API获取用户信息、帖子
- Python 常用内建模块-base64
赔罪
Python系统学习python前端linux
目录base64小结练习base64Base64是一种用64个字符来表示任意二进制数据的方法。用记事本打开exe、jpg、pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的文本处理软件能处理二进制数据,就需要一个二进制到字符串的转换方法。Base64是一种最常见的二进制编码方法。Base64的原理很简单,首先,准备一个包含64个字符的数
- 基于python的ansys_基于python的感知机
weixin_39687990
基于python的ansys
一、1、感知机可以描述为一个线性方程,用python的伪代码可表示为:sum(weight_i*x_i)+bias->activation#activation表示激活函数,x_i和weight_i是分别为与当前神经元连接的其它神经元的输入以及连接的权重。bias表示当前神经元的输出阀值(或称偏置)。箭头(->)左边的数据,就是激活函数的输入2、定义激活函数f:deffunc_activator(
- python ansys workbench联动_【干货】如何在ANSYS WORKBENCH中关联几何模型和有限元模型...
weixin_39644377
pythonansysworkbench联动
原标题:【干货】如何在ANSYSWORKBENCH中关联几何模型和有限元模型我们都知道,通过诸如HPERMESH这样的有限元网格划分软件得到的模型,在传入ANSYS以后,只包含节点和单元信息。但是当我们在WB中使用模型操作时,有时候需要选择几何特征,如在圆孔面上施加圆柱支撑,而此时对象只有单元节点信息,并无体面线的几何信息,该怎么办呢?显然,处理此问题的有效途径,在于把有限元模型与该有限元模型对应
- python ansys workbench联动_如何在ANSYS WORKBENCH中关联几何模型和有限元模型
YUNYA麻麻
pythonansysworkbench联动
我们都知道,通过诸如HPERMESH这样的有限元网格划分软件得到的模型,在传入ANSYS以后,只包含节点和单元信息。但是当我们在WB中使用模型操作时,有时候需要选择几何特征,如在圆孔面上施加圆柱支撑,而此时对象只有单元节点信息,并无体面线的几何信息,该怎么办呢?显然,处理此问题的有效途径,在于把有限元模型与该有限元模型对应的几何模型进行关联,再一起导入到MECHANICAL中进行分析,则既能够既享
- 数据增强:扩充数据集提升模型泛化能力
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1.数据增强的重要性在机器学习领域,模型的泛化能力至关重要。一个泛化能力强的模型能够在未见数据上表现良好,而过拟合的模型则会在训练数据上表现出色,但在新数据上表现糟糕。数据增强是一种有效提升模型泛化能力的技术,它通过对现有数据进行各种变换,人为地扩充数据集,从而增加训练数据的数量和多样性。1.2.数据增强的应用场景数据增强广泛应用于各种机器学习任务中,包括:图像识别:对图像进行旋转
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- NLP高频面试题(三)——普通RNN的梯度消失和梯度爆炸问题
Chaos_Wang_
NLP常见面试题自然语言处理rnn人工智能
普通RNN(循环神经网络)的梯度消失和梯度爆炸问题是指在训练深层或长序列的RNN模型时出现的两种典型问题:一、梯度消失(VanishingGradient)梯度消失是指在反向传播过程中,梯度逐层传播时变得越来越小,最终趋于接近0,导致模型前层的参数难以更新。原因:在反向传播时,每一层的梯度是通过链式法则计算得到的。因为链式求导中不断乘以一个较小的数值(小于1),随着层数或时间步的增加,梯度将指数级
- 在 Ansys Mechanical 中创建等效应力结果并使用 Python 导出到文件
David WangYang
硬件工程
介绍在AnsysMechanical模型中,通常需要对许多实体/曲面体或它们组进行后处理等效应力或总变形等。使用分组在TreeGrouping文件夹中的NamedSelections,可以在Mechanical中编写Python脚本来自动生成结果对象。此外,once可以获取新创建的结果对象,并再次使用Mechanical中的Python脚本将所有结果集的结果导出到.csv文件。在本文中,我们将探讨
- 关于使用python进行处理雷达数据笔记
六毛驴
python数据分析
好久不见,甚是想念本人深知这段时间鸽了一篇博(上一篇博),后续会补上的,今天想写一下关于使用python进行TI雷达接收回波数据处理的一些常见问题和解决方法。这也是前几天领导给我布置的任务,所以我将这段时间自己遇到的并且已经解决的问题进行了简单的汇总,也会推荐几本这几天阅读了python书籍。python书籍推荐:python学习手册MarkLutz著(对应python版本3.X,2.X都可)Py
- Docker打包深度学习项目
FLY_LTL
docker深度学习容器
文章目录Docker打包深度学习项目1.Docker和NVIDIAContainerToolkit的安装1.Docker2.NVIDIAContainerToolkit3.添加国内镜像源2.使用Dockerfile打包并保存镜像1.Dockerfile2.通过Dockerfile生成镜像3.保存镜像和加载4.运行Docker并测试参考Docker打包深度学习项目本文来源于个人实践总结,供各位同学参
- 焊接性能分析代码(Python)
骑蜗牛上月亮
python开发语言
welding_performance_data.xls数据文件。welding_strengthtoughness5001052012480855015490953013510115401447075601690018600121500139111578115importpandasaspdimportmatplotlib.pyplotaspltimporttkinterastkfrommatp
- 从零实现B站视频下载器:Python自动化实战教程
木觞清
#编程语言自动化运维
一、项目背景与实现原理1.1B站视频分发机制Bilibili的视频采用音视频分离技术,通过以下方式提升用户体验:动态码率适配(1080P/4K/HDR)分段加载技术(基于M4S格式)内容保护机制(防盗链/签名验证)1.2技术实现路线graphTDA[模拟浏览器请求]-->B[获取加密播放信息]B-->C[解析音视频地址]C-->D[多线程下载]D-->E[FFmpeg合并]二、代码逐层解析2.1请
- chatgpt赋能python:Python处理雷达基数据:从入门到实践
lvsetongdao123
ChatGptpythonchatgpt开发语言计算机
Python处理雷达基数据:从入门到实践随着气象技术的不断发展,雷达探测技术已成为当今天气预报和气象研究的主要手段之一。雷达基数据是气象雷达接收到的未经加工的原始数据,因其包含大量天气信息,不仅在天气预报、天气预警等方面得到了广泛应用,还被广泛地用于气象科研和大气环境研究。本文将介绍如何使用Python处理雷达基数据,解析其中的信息,获取有效的天气数据,以及分析和可视化这些数据。雷达基数据格式与处
- 使用TensorFlow、OpenCV和Pygame实现图像处理与游戏开发
UwoiGit
tensorflowopencvpygame
在本篇文章中,我们将介绍如何结合使用TensorFlow、OpenCV和Pygame来进行图像处理和游戏开发。这三个工具在机器学习、计算机视觉和游戏开发领域都非常流行,并且它们的结合可以提供强大的功能和无限的创造力。我们将逐步介绍如何安装和配置这些工具,并提供相关的源代码示例。安装TensorFlowTensorFlow是一个基于数据流图的开源机器学习框架,提供了丰富的工具和库来构建和训练各种深度
- PTA天梯赛PYthon7-10 树的遍历
胡同Alley
算法数据结构python
给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列。这里假设键值都是互不相等的正整数。输入格式:输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其后序遍历序列。第三行给出其中序遍历序列。数字间以空格分隔。输出格式:在一行中输出该树的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。输入样例:723157641234567输出样例:4163572代码长度限制
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- 机器学习流程—数据预处理 清洗
不二人生
机器学习机器学习人工智能数据预处理
文章目录机器学习流程—数据预处理清洗定义问题数据预处理数据加载与展示重复数据处理数据类型空值处理无关特征删除数据分布删除异常值生成标签和特征数据分割机器学习流程—数据预处理清洗数据处理是将数据从给定形式转换为更可用和更理想的形式的任务,即使其更有意义、信息更丰富。使用机器学习算法、数学建模和统计知识,整个过程可以自动化。这个完整过程的输出可以是任何所需的形式,如图形、视频、图表、表格、图像等等,具
- Python自动化运维开发系列—CICD项目
weixin_46240874
导语都忘记是什么时候知道python的了,我是搞linux运维的,早先只是知道搞运维必须会shell,要做一些运维自动化的工作,比如实现一些定时备份数据啊、批量执行某个操作啊、写写监控脚本什么的。后来发现工作量大的时候shell开始变慢,实现某个功能使用shell感觉力不从心,听人说python能实现shell能做的一切功能,而且开发效率高,速度快,慢慢的就认识了python,多多少少看点简单的东
- 深度革命:ResNet 如何用 “残差连接“ 颠覆深度学习
安意诚Matrix
机器学习笔记深度学习人工智能
一文快速了解ResNet创新点在深度学习的历史长河中,2015年或许是最具突破性的一年。这一年,微软亚洲研究院的何恺明团队带着名为ResNet(残差网络)的模型横空出世,在ImageNet图像分类竞赛中以3.57%的错误率夺冠,将人类视觉的识别误差(约5.1%)远远甩在身后。更令人震撼的是,ResNet将神经网络的深度推至152层,彻底打破了"深层网络无法训练"的魔咒。这场革命的核心,正是一个简单
- 智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算【超级详细版】
AI筑梦师
计算机视觉算法深度学习人工智能机器学习计算机视觉python
智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算1.引言1.1研究背景在计算机视觉、模式识别、医学影像分析和自动驾驶等领域,形状匹配是核心任务之一。然而,现实世界的形状往往存在可变性(Variability),主要体现在以下几个方面:形变(Deformation):物体可能由于柔性材料、外力作用或生物运动发生非刚性形变。尺度变化(ScaleVariation):目标形状在不同场景下可能大
- 每日实战:python爬虫之网页跳转-以某博为例
代码CC
python爬虫python爬虫pandas开发语言
一、项目背景与核心需求通过逆向分析微博热榜接口,实现实时热搜数据抓取,重点解决:话题跳转链接参数缺失问题页面数据清洗规范化处理多维度数据采集存储二、网页跳转爬虫实现原理2.1跳转链接生成逻辑原始热搜词→"雷军刚知道柯洁定了SU7Ultra"处理流程:1.添加话题标识→#雷军刚知道柯洁定了SU7Ultra#2.URL编码→%23雷军刚知道柯洁定了SU7Ultra%233.添加搜索参数→&t=31生成
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S