r语言实现岭回归_r语言中对LASSO,Ridge岭回归和ElasticNet模型实现

介绍

Glmnet是一个通过惩罚最大似然来拟合广义线性模型的包。正则化路径是针对正则化参数λ的值网格处的套索或弹性网络罚值计算的。该算法速度极快,可以利用输入矩阵中的稀疏性x。它符合线性,逻辑和多项式,泊松和Cox回归模型。可以从拟合模型中做出各种预测。它也可以适合多响应线性回归。

glmnet算法采用循环坐标下降法,它连续优化每个参数上的目标函数并与其他参数固定,并反复循环直至收敛。该软件包还利用强大的规则来有效地限制活动集。由于高效的更新和技术,如热启动和主动集合收敛,我们的算法可以非常快地计算解决方案路径。

该代码可以处理稀疏的输入矩阵格式,以及系数的范围约束。其核心glmnet是一组Fortran子程序,它们使执行速度非常快。

该软件包还包括用于预测和绘图的方法以及执行K倍交叉验证的功能。

首先,我们加载glmnet包:

library(glmnet)

## Loading required package: Matrix## Loaded glmnet 1.9-9

包中使用的默认模型是高斯线性模型或“最小二乘”,我们将在本节中演示。我们加载一组预先创建的数据用于说明。用户可以加载自己的数据,也可以使用保存在工作区中的数据。

load("QuickStartExample.RData")

该命令从该保存的R数据档案中加载输入矩阵x和响应向量y。

我们使用最基本的呼叫来适应模型glmnet。

fit=glmnet(x,y)

“适合”是类的一个对象,glmnet它包含拟合模型的所有相关信息以供进一步使用。我们不鼓励用户直接提取组件。相反,提供对象,如各种方法plot,print,coef和predict,使我们能够更优雅执行这些任务。

我们可以通过执行plot函数来显示系数:

MSE在测试集上

我们看到lasso(alpha=1)在这里做的最好。我们也看到,使用的lambda的范围与alpha不同。

系数上限和下限

这些是最近添加的增强模型范围的功能。假设我们想要拟合我们的模型,但将系数限制为大于-0.7且小于0.5。这是很容易通过实现upper.limits和lower.limits参数:

惩罚因素

该参数允许用户对每个系数应用单独的惩罚因子。其每个参数的默认值为1,但可以指定其他值。特别是,任何penalty.factor等于零的变量都不会受到惩罚!让[

数学处理错误]v表示[ 数学处理错误]的惩罚因子变量。罚款期限变为[ 数学处理错误]

请注意,惩罚因子在内部重新调整为与nvars相加。

当人们对变量有先验知识或偏好时,这非常有用。在很多情况下,一些变量可能非常重要,以至于一直想要保持这些变量,这可以通过将相应的惩罚因子设置为0来实现:

大数据部落——中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务

统计分析和数据挖掘咨询服务

:y0.cn/teradat(咨询服务请联系官网客服)

QQ:3025393450

【服务场景】 科研项目;

公司项目外包 ;线上线下一对一培训

;数据采集;学术研究;报告撰写;市场调查。

【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询服务

分享最新的大数据资讯,每天学习一点数据分析,让我们一起做有态度的数据人

微信客服号:lico_9e

QQ交流群:186388004 

欢迎关注微信公众号,了解更多数据干货资讯!

 

你可能感兴趣的:(r语言实现岭回归)