- 深度学习实战:基于嵌入模型的AI应用开发
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能深度学习ai
深度学习实战:基于嵌入模型的AI应用开发关键词:嵌入模型(EmbeddingModel)、深度学习、向量空间、语义表示、AI应用开发、相似性搜索、迁移学习摘要:本文将带你从0到1掌握基于嵌入模型的AI应用开发全流程。我们会用“翻译机”“数字身份证”等生活比喻拆解嵌入模型的核心原理,结合Python代码实战(BERT/CLIP模型)演示如何将文本、图像转化为可计算的语义向量,并通过“智能客服问答”“
- java项目打包_Java项目打包方式分析
weixin_39727402
java项目打包
概述在项目实践过程中,有个需求需要做一个引擎能执行指定jar包的指定main方法。起初我们以一个简单的spring-boot项目进行测试,使用spring-boot-maven-plugin进行打包,使用java-cpdemo.jar.执行,结果报错找不到对应的类。我分析了spring-boot-maven-plugin打包的结构,又回头复习了java原生jar命令打包的结果,以及其他Maven打
- 2019-2020年线上睡眠市场深度分析报告
我就是夏迎春
本文还有配套的精品资源,点击获取简介:本报告全面分析了2019至2020年间中国线上消费者购买睡眠相关产品的行为和趋势。报告内容涉及市场概况、消费偏好、消费者行为、地域差异及未来展望,详细解读了消费者对多种睡眠产品的偏好及线上市场的发展。京东平台的数据为研究提供了丰富的实证,包括市场增长、产品多样化、高端产品需求上升、科技产品的发展、购买时段、年龄分布、决策因素以及地域差异等。报告指出,健康意识和
- Python爬虫实战:用Tushare和Baostock爬取股票历史数据及K线图与技术指标计算
在金融数据分析和量化交易中,股票历史数据的获取是进行技术分析、回测和策略研究的第一步。传统上,投资者需要依赖付费数据服务,然而如今,借助Python强大的爬虫工具和开源数据接口,我们能够轻松地爬取免费的历史股票数据,并结合K线图与技术指标来进行深入分析。Tushare和Baostock是两个非常流行的开源金融数据接口。Tushare提供了丰富的国内外金融数据,特别是A股市场的历史数据和实时数据,而
- 基于 chat-uikit-react-native 实现一个 React Native 聊天 App
qq_38405998
reactnative即时通信typescriptandroidios
一、前言本文分享了通过github源码快速实现一个聊天App。二、具体步骤Step1:配置开发环境如果您电脑没有ReactNative开发环境,请先按照ReactNative官网set-up-your-environment配置开发环境.Step2:下载源码Demo源码可前往github下载Step3:获取应用信息您需要前往腾讯云即时通讯官网创建并获取相关的应用信息,关于如何创建即时通信账号请点击
- 推荐几本创业者需要掌握的财务管理类书籍
AI布道师阿彬
单独的博客资料创业者财务管理书籍推荐创业
作为创业者,需要建立一个坚实的财务和管理知识体系。这不仅仅是“看书”,而是通过阅读经典来构建商业思维框架。以下是精心挑选的一系列书籍,并按照从**“入门认知”到“高手进阶”**的逻辑进行分类,每本书都附上了推荐理由,确保它们能精准地解决创业者在创业不同阶段可能遇到的问题。第一部分:财务思维篇(让您看懂钱、管好钱、用好钱)对于技术出身的创始人来说,财务知识不是为了让您成为会计,而是为了让您拥有**“
- 2024年AI 智能助手(大模型)产品市场分析|商派
徐礼昭|商派软件市场负责人
人工智能
一、引言人工智能的浪潮不断向前推进,智能助手作为其中的重要应用,已经逐渐渗透到我们生活的各个方面。它们以其便捷性和个性化的特点,改变了我们与世界的互动方式。本报告将对AI智能助手进行全面的行业分析,包括行业概况、主要玩家、用户数据、发展要素以及未来趋势等方面,并通过具体案例分享,帮助读者深入了解这一领域的现状和未来发展潜力。二、行业概览(一)智能助手的定义和发展阶段智能助手是利用人工智能技术为用户
- Fiddler抓包工具在多端调试中的实战应用:结合Postman与Charles构建调试工作流
2501_91600747
httpudphttpswebsocket网络安全网络协议tcp/ip
在如今前后端分离、接口驱动开发逐渐成为主流的背景下,开发者越来越依赖于各类调试工具,以应对复杂的网络请求管理、多设备调试和跨团队协作等问题。而在诸多网络分析工具中,Fiddler抓包工具以其功能全面、扩展灵活、支持HTTPS抓包和断点调试等特性,在开发者圈中拥有稳定的口碑。本文将从一个更贴近日常开发流程的角度,探讨如何在多端调试、接口测试、数据模拟等环节中,灵活运用Fiddler,并与Postma
- 程序员面试中的故障排查:展现问题解决能力的黄金法则
程序员面试中的故障排查:展现问题解决能力的黄金法则关键词:故障排查、面试技巧、问题解决能力、结构化思维、技术沟通、根因分析、面试场景模拟摘要:在程序员面试中,故障排查类问题是考察候选人“实战能力”的核心环节——它不仅检验技术知识的深度,更能暴露逻辑思维、沟通表达和抗压能力的真实水平。本文将通过“侦探破案”式的类比,结合真实面试场景,拆解故障排查的黄金法则,帮助你在面试中从“解题者”升级为“问题解决
- 基于OpenCv的图片倾斜校正系统详细设计与具体代码实现
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于OpenCv的图片倾斜校正系统详细设计与具体代码实现1.背景介绍1.1图像处理的重要性在当今数字时代,图像处理技术在各个领域都扮演着重要角色。无论是在计算机视觉、模式识别、医学影像、遥感探测还是多媒体处理等领域,图像处理都是不可或缺的核心技术。通过对图像进行预处理、增强、分割、特征提取等操作,可以从图像中获取有价值的信息,为后续的分析和决策提供支持。1.2图像倾斜问题及其影响在实际应用中,由于
- iOS 远程调试与离线排查实战:构建非现场问题复现机制
HTTPwise
httpudphttpswebsocket网络安全网络协议tcp/ip
iOS开发者都知道,调试最怕两个字:“偶发”。用户说App闪退了,你点了十遍也没问题;测试说功能卡顿了,你抓日志时它又顺滑如新。最麻烦的是,这种“现场问题”往往在你连接不到用户设备时发生。面对这种情况,我们团队过去一年逐渐搭建起一套以离线分析为核心的调试流程,即使设备不在身边,也能高效定位问题。本篇文章将围绕以下四类典型场景,拆解我们如何借助一套工具组合来解决:无法重现的崩溃问题用户侧偶发卡顿非越
- 【k近邻】 K-Nearest Neighbors算法原理及流程
F_D_Z
机器学习方法数理算法学习机器学习k近邻算法k-近邻算法
【k近邻】K-NearestNeighbors算法原理及流程【k近邻】K-NearestNeighbors算法距离度量选择与数据维度归一化【k近邻】K-NearestNeighbors算法k值的选择【k近邻】Kd树的构造与最近邻搜索算法【k近邻】Kd树构造与最近邻搜索示例k近邻算法(K-NearestNeighbors,简称KNN)是一种常用的监督学习算法,可以用于分类和回归问题。在OpenCV中
- 高通 QCS8550 大模型性能深度解析:从算力基准到场景实测的全维度 Benchmark
伊利丹~怒风
Qualcomm人工智能AI编程pythonarm自然语言处理
前言在人工智能技术狂飙突进的时代,大模型正以前所未有的速度重塑各行业生态,从智能客服到多模态交互,从边缘推理到端侧部署,其应用场景不断拓展。而这一切革新的背后,离不开底层硬件的强力支撑。高通QCS8550作为面向下一代智能设备的旗舰级计算平台,凭借高达48TOPS的AI算力与先进的第七代高通AI引擎,在大模型性能表现上极具竞争力。其异构多核架构不仅能高效处理复杂的神经网络计算,还通过软硬件协同优化
- 高通手机跑AI系列之——3D姿势估计
伊利丹~怒风
Qualcomm智能手机AI编程armpython人工智能
目录环境准备手机软件算法Demo代码功能分析关键模块解析示例代码代码效果环境准备手机测试手机型号:RedmiK60Pro处理器:第二代骁龙8移动--8gen2运行内存:8.0GB,LPDDR5X-8400,67.0GB/s摄像头:前置16MP+后置50MP+8MP+2MPAI算力:NPU48TopsINT8&&GPU1536ALUx2x680MHz=2.089TFLOPS提示:任意手机均可以,性能
- 手机屏像素缺陷修复及相关液晶线路激光修复原理
syncon12
科技制造3d
摘要手机屏像素缺陷严重影响显示效果,而液晶线路异常是导致像素缺陷的关键因素之一。激光修复技术凭借高精度与非接触特性,能够有效修复液晶线路,进而改善像素显示。本文分析手机屏像素缺陷类型,探究液晶线路激光修复原理、工艺及参数优化,为提升手机屏显示质量提供理论支撑。引言随着手机屏向高分辨率、高刷新率方向发展,像素密度不断提升,像素缺陷问题愈发凸显。液晶线路作为控制像素显示的核心结构,其断路、短路、信号传
- 使用 Docker 部署 MySQL 8
使用Docker部署MySQL8详细指南MySQL是一个广泛使用的开源关系型数据库管理系统。通过Docker部署MySQL8可以快速搭建一个可移植、可扩展的数据库环境。本文将详细介绍如何使用Docker部署MySQL8,并讲解如何根据需求配置MySQL。从拉取镜像开始的详细步骤1.拉取MySQL8镜像首先,从DockerHub拉取MySQL8的官方镜像。dockerpullmysql:8.0mys
- linux服务器上创建一个文件需要授权一次的问题根源:umask
qq_30024063
linux运维服务器
umask命令用于设置文件的默认权限掩码。文件的权限掩码决定了新建文件的默认权限。umask命令的语法如下:umask[-S][模式]其中,-S选项用于以符号方式显示当前的权限掩码。模式表示要设置的新的权限掩码,可以使用八进制或者符号两种方式。在Linux系统中,每个文件都有三个属性:所有者权限、所属组权限和其他用户权限。每个属性有读、写和执行三个权限,分别用r、w和x表示。对于每一个属性,权限可
- ENSP---通过配置实现client使用域名访问HTTP服务器
W111115_
计算机网络---HCIA服务器运维http网络协议
1.拓补图拓补图2.需求1.有一个完整的网关(路由器);2、左右两边通过交换机建立两个网段;3、Client通过IP访问http服务器、Client通过域名访问http服务器;4、使用192.168.1.0/24进行合理分配;3.需求分析1.给PC1、PC2、Client、百度服务器配置IP地址、掩码、网关。
- 用 Python 开发文字冒险游戏:从零开始的教程
晓天天天向上
pythonmicrosoft开发语言
文字冒险游戏(Text-basedAdventureGame)是一种经典的游戏类型,玩家通过输入文字指令与游戏世界互动。这种游戏不依赖复杂的图形界面,非常适合初学者学习编程逻辑和用户交互。在本篇博客中,我们将用Python开发一个简单的文字冒险游戏,体验游戏开发的乐趣。1.游戏设计思路游戏背景玩家醒来发现自己身处一个神秘的地下城,需要探索房间、收集物品、战胜敌人并找到出口。核心机制房间导航:玩家可
- 从零开始理解零样本学习:AI人工智能必学技术
AI天才研究院
AgenticAI实战AI人工智能与大数据AI大模型企业级应用开发实战ai
从零开始理解零样本学习:AI人工智能必学技术关键词:零样本学习、人工智能、机器学习、知识迁移、语义嵌入摘要:本文旨在全面深入地介绍零样本学习这一在人工智能领域具有重要意义的技术。首先阐述零样本学习的背景和基本概念,通过详细的解释和直观的示意图让读者建立起对零样本学习的初步认识。接着深入剖析其核心算法原理,结合Python代码进行详细说明,同时引入相关数学模型和公式并举例阐释。通过项目实战部分,带领
- 稳定币独角兽:Circle
InnoLink_1024
区块链稳定币区块链
Circle公司背景分析CircleInternetFinancial(以下简称Circle)是一家成立于2013年的美国金融科技公司,总部位于波士顿,由JeremyAllaire和SeanNeville联合创立。公司最初专注于点对点加密货币支付和交易,后转型为全球领先的稳定币发行机构,其核心产品是与美元1:1挂钩的USDCoin(USDC),目前为全球第二大稳定币,仅次于Tether的USDT。
- 高斯混合模型(Gaussian Mixture Model, GMM)
不想秃头的程序
神经网络语音识别人工智能深度学习网络
高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据点由多个高斯分布(GaussianDistribution)混合生成的过程。它广泛应用于聚类分析、密度估计、图像分割、语音识别等领域,尤其适合处理非球形簇或多模态数据。以下是GMM的详细介绍:一、核心思想GMM假设数据是由多个高斯分布混合生成的,每个高斯分布代表一个簇(Cluster),并引入隐变量(Lat
- 卷积神经网络(Convolutional Neural Network, CNN)
不想秃头的程序
神经网络语音识别人工智能深度学习网络卷积神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专门用于处理图像、视频等网格数据的深度学习模型。它通过卷积层自动提取数据的特征,并利用空间共享权重和池化层减少参数量和计算复杂度,成为计算机视觉领域的核心技术。以下是CNN的详细介绍:一、核心思想CNN的核心目标是从图像中自动学习层次化特征,并通过空间共享权重和平移不变性减少参数量和计算成本。其关键组件包括:卷积层(
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- P25:LSTM实现糖尿病探索与预测
?Agony
lstm人工智能rnn
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、相关技术1.LSTM基本概念LSTM(长短期记忆网络)是RNN(循环神经网络)的一种变体,它通过引入特殊的结构来解决传统RNN中的梯度消失和梯度爆炸问题,特别适合处理序列数据。结构组成:遗忘门:决定丢弃哪些信息,通过sigmoid函数输出0-1之间的值,表示保留或遗忘的程度。输入门:决定更新哪些信息,同样通过sigmoid函数控制更新
- Python训练营打卡——DAY16(2025.5.5)
cosine2025
Python训练营打卡python开发语言机器学习
目录一、NumPy数组基础笔记1.理解数组的维度(Dimensions)2.NumPy数组与深度学习Tensor的关系3.一维数组(1DArray)4.二维数组(2DArray)5.数组的创建5.1数组的简单创建5.2数组的随机化创建5.3数组的遍历5.4数组的运算6.数组的索引6.1一维数组索引6.2二维数组索引6.3三维数组索引二、SHAP值的深入理解三、总结1.NumPy数组基础总结2.SH
- CG-05 角度传感器 转动灵敏 寿命长 可长期用在灰尘等恶劣环境
产品概述本产品采用非接触原理360度传感,机械轴传动采用两个双密封式轴承,转动灵敏度高。连接轴采用不锈钢304制造,品质出色。该产品可取代早期塑料电阻产品,寿命长,能长期使用于灰尘等恶劣环境。功能特点◆检测精度高,系统采用低功耗节能设计,数字处理技术◆量程宽,稳定性好◆数据信息显示线性度好,信号传输距离长,抗外界干扰能力强适用范围角度传感器对角度有着极强的角度分辨率,对转动的位置进行稳定的信号输出
- FastJSON 解析错误分析与解决方案
小屁孩大帅-杨一凡
服务器linux前端运维
常见原因及解决方案1.数据为空或非JSON格式原因:输入数据可能为空字符串、null或其他非JSON格式内容。解决方案:在解析前检查数据是否有效。if(jsonStr!=null&&!jsonStr.trim().isEmpty()){//检查是否以JSON对象或数组的符号开头if(jsonStr.trim().startsWith("{")||jsonStr.trim().startsWith(
- 2025 最新 【中兴通讯】投资价值分析报告
AI天才研究院
计算ai价值投资
2025.3.28最新【中兴通讯】投资价值分析报告文章目录2025.3.28最新【中兴通讯】投资价值分析报告摘要一、公司概况与行业背景1.1公司基本架构1.2战略升级路径1.3行业发展趋势通信设备市场格局(2024年)技术迭代周期二、核心竞争力分析2.1技术壁垒2.2市场优势2.3供应链能力三、财务深度解析3.1关键指标趋势(单位:亿元)3.2资产负债表亮点3.3现金流质量四、风险与机遇评估4.1
- 深入详解:决策树算法的概念、原理、实现与应用场景
猿享天开
算法决策树机器学习
深入详解:决策树算法的概念、原理、实现与应用场景决策树(DecisionTree)是机器学习中一种直观且广泛应用的监督学习算法,适用于分类和回归任务。其树形结构易于理解,特别适合初学者。本文将从概念、原理、实现到应用场景,全面讲解决策树,并通过流程图和可视化示例增强理解,通俗易懂,帮助小白快速掌握决策树算法相关知识。1.决策树的概念1.1什么是决策树?决策树通过一系列条件判断(决策节点)将输入数据
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,