经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法、脉冲响应法、频率响应法、相关分析法、谱分析法、最小二乘法和极大似然法等。
其中最小二乘法(LS)是一种经典的和最基本的,也是应用最广泛的方法。
但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(GIS)、辅助变量法(IV)、增广最小二乘法(EI,S)和广义最小二乘法(GIS),以及将一般的最小二乘法与其他方法相结合的方法,有最小二乘两步法(COR—IS)和随机逼近算法等。
经典的系统辨识方法还存在着一定的不足:(1)利用最小二乘法的系统辨识法一般要求输入信号已知,并且必须具有较丰富的变化,然而,这一点在某些动态系统中,系统的输入常常无法保证;(2)极大似然法计算耗费大,可能得到的是损失函数的局部极小值;(3)经典的辨识方法对于某些复杂系统在一些情况下无能为力。
随着系统的复杂化和对模型精确度要求的提高,系统辨识方法在不断发展,特别是非线性系统辨识方法。
主要有:1、集员系统辨识法在1979年集员辨识首先出现于Fogel撰写的文献中,1982年Fogel和Huang又对其做了进一步的改进。
集员辨识是假设在噪声或噪声功率未知但有界UBB(UnknownButBounded)的情况下,利用数据提供的信息给参数或传递函数确定一个总是包含真参数或传递函数的成员集(例如椭球体、多面体、平行六边体等)。
不同的实际应用对象,集员成员集的定义也不同。集员辨识理论已广泛应用到多传感器信息融合处理、软测量技术、通讯、信号处理、鲁棒控制及故障检测等方面。
2、多层递阶系统辨识法多层递阶方法的主要思想为:以时变参数模型的辨识方法作为基础,在输入输出等价的意义下,把一大类非线性模型化为多层线性模型,为非线性系统的建模给出了一个十分有效的途径。
3、神经网络系统辨识法由于人工神经网络具有良好的非线性映射能力、自学习适应能力和并行信息处理能力,为解决未知不确定非线性系统的辨识问题提供了一条新的思路。
与传统的基于算法的辨识方法相比较,人工神经网络用于系统辨识具有以下优点:(1)不要求建立实际系统的辨识格式,可以省去对系统建模这一步骤;(2)可以对本质非线性系统进行辨识;(3)辨识的收敛速度仅与神经网络的本身及所采用的学习算法有关;(4)通过调节神经元之间的连接权即可使网络的输出来逼近系统的输出;(5)神经网络也是系统的一个物理实现,可以用在在线控制。
4、模糊逻辑系统辨识法模糊逻辑理论用模糊集合理论,从系统输入和输出的量测值来辨识系统的模糊模型,也是系统辨识的一个新的和有效的方法,在非线性系统辨识领域中有十分广泛的应用。
模糊逻辑辨识具有独特的优越性:能够有效地辨识复杂和病态结构的系统;能够有效地辨识具有大时延、时变、多输入单输出的非线性复杂系统;可以辨识性能优越的人类控制器;可以得到被控对象的定性与定量相结合的模型。
模糊逻辑建模方法的主要内容可分为两个层次:一是模型结构的辨识,另一个是模型参数的估计。典型的模糊结构辨识方法有:模糊网格法、自适应模糊网格法、模糊聚类法及模糊搜索树法等。
5、小波网络系统辨识法小波网络是在小波分解的基础上提出的一种前馈神经网络口,使用小波网络进行动态系统辨识,成为神经网络辨识的一种新的方法。
小波分析在理论上保证了小波网络在非线性函数逼近中所具有的快速性、准确性和全局收敛性等优点。
小波理论在系统辨识中,尤其在非线性系统辨识中的应用潜力越来越大,为不确定的复杂的非线性系统辨识提供了一种新的有效途径,其具有良好的应用前景。
谷歌人工智能写作项目:爱发猫
您好lz好文案。线性的差分方程,可以用z变换法的方法求解,可你这个是非线性的,我不知道可不可以,我大约是在2年前学的这个,现在不太记得了。实在不行,用代入迭代求解。
lz的这类式子,我倒是在一门叫智能控制的课里遇见过,不过当时问的不是楼主的这些问题,当时是让我用神经网络去逼近和辨识这个非线性系统。至于要转成传递函数的问题,如果能够转成z变换,就可以转成传递函数。
但是说实话,对于非线性系统,我不认为可以,当然也可能是我当年没学好,如果错了请见谅。
如果真的要分析的话,最好还是用软件分析,比如MATLAB,看lz也是跟我学差不多专业的,应该会用吧,实在不会用百度,网上都有的。纯手打,请采纳。
是的。在Hopfield神经网络中,引入了“能量函数”的概念,这一概念对神经网络的研究意义重大,它使得神经网络运行稳定性的判断有了可靠依据。
Hopfield网络作为非线性动力学系统,具有丰富的动态特性,如稳定性、有限环状态和混沌状态等。网络达到稳定时的状态X,称为网络的吸引子。
一个动力学系统的最终行为是由它的吸引子决定的,吸引子的存在为信息的分布存储记忆和神经优化计算提供了基础。网络的稳定性与能量函数密切相关,利用网络的能量函数可实现优化求解功能。
网络的能量函数在网络状态按一定规则变化时,能自动趋向能量的极小点。如果把一个待求解问题的目标函数以网络能量函数的形式表达出来,当能量函数趋于最小时,对应的网络状态就是问题的最优解。
神经元的广泛互联与并行工作必然使整个网络呈现出高度的非线性特点。在客观世界中,许多系统的输入与输出之间存在着复杂的非线性关系,对于这类系统,往往很难用传统的数理方法建立其数学模型。
设计合理地神经网络通过对系统输入输出样本对进行自动学习,能够以任意精度逼近任何复杂的非线性映射。神经网络的这一优点能使其可以作为多维非线性函数的通用数学模型。
该模型的表达式非解析的,输入输出数据之间的映射规则由神经网络在学习阶段自动抽取并分布式存储在网络的所有连接中。具有非线性映射功能的神经网络应用十分广阔,几乎涉及所有领域。
A是输出结果矩阵。E=T-A;这一句是计算输出与实际的误差。输入、输出不是直接的数学表达式关系,是一个非线性系统,通过训练得到的。
BP(BackPropagation)神经网络是年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。
神经元的广泛互联与并行工作必然使整个网络呈现出高度的非线性特点。在客观世界中,许多系统的输入与输出之间存在着复杂的非线性关系,对于这类系统,往往很难用传统的数理方法建立其数学模型。
设计合理地神经网络通过对系统输入输出样本对进行自动学习,能够以任意精度逼近任何复杂的非线性映射。神经网络的这一优点能使其可以作为多维非线性函数的通用数学模型。
该模型的表达式非解析的,输入输出数据之间的映射规则由神经网络在学习阶段自动抽取并分布式存储在网络的所有连接中。具有非线性映射功能的神经网络应用十分广阔,几乎涉及所有领域。
非线性现象从整体上看是复杂的。在研究具体问题时,为了简化起见,常常把研究的范围限制在系统的局部性质上,这样就可以用泰勒展式的一次项来近似地描述系统的运动。这就是线性化的方法。
但是系统的非线性性质包含在高次项中,所以为了研究非线性系统的整体行为就必须建立非线性数学模型。非线性系统辨识中最重要问题之一是确定模型的结构。
如果对系统的运动有足够的知识,则可以按照系统的运动规律(或作适当的近似)给出它的数学模型。一般说来,这样的模型是由非线性微分方程或非线性差分方程给出的。
对这类模型的辨识可以采用线性化、展开成特殊函数等方法。如果对系统了解得尚不充分,则选择模型就很困难。
例如对处于大冲角的飞机的动态,电力系统的暂态,气候和水文现象,各种生理反应过程等就很难给出一个数学模型。
人们对非线性系统的定量性质尚缺乏完全的了解,因此就产生了根据观测到的现象决定一个非线性系统的模型是否唯一的问题。然而在各种应用中只要对系统的输入输出行为的描述是合适的,模型是否唯一便不是本质的问题。
往往可以有许多非线性模型用来描述系统的行为。模型的选择取决于模型的可辨识性、参数估计的难易程度和模型适用性检验等。