Embedding和Word2Vec用法

Embedding

Embedding 层的输入是一个二维整数张量, 形状为(samples,sequence_length),即(样本数,序列长度)

较短的序列应该用 0 填充,较长的序列应该被截断,保证输入的序列长度是相同的

Embedding 层输出是(samples,sequence_length,embedding_dimensionality) 的三维浮点数张量。

  • 首先,我们需要对文本进行分词处理,然后对分词结果进行序列化
  • 再统一输入的序列长度,最后把统一长度的序列化结果输入到 Embedding 层中

整个过程可以用下面的图描述:

Embedding和Word2Vec用法_第1张图片

从样本的角度看,我们可以用下面的图描述这个过程:

Embedding和Word2Vec用法_第2张图片

gensim库提供了一个word2vec的实现,我们使用几个API就可以方便地完成word2vec

gensim实现Word2Vec

示意代码如下:

from torch import nn
from gensim.models import Word2Vec
# w2v模型位置
w2v_path = "model/w2v_all.model"
class Preprocess():
  def __init__(self,sentences,sen_len,w2v_path=w2v_path):
    self.w2v_path = w2v_path
    self.sentences = sentences
    self.sen_len = sen_len
    self.idx2word = []
    self.word2idx = {}
    self.embedding_matrix = []
  
  def get_w2v_model(self):
    # 把之前保存的w2v模型加载进来
    self.embedding = Word2Vec.load(self.w2v_path)
    self.embedding_dim = self.embedding.vector_size

  def add_embedding(self,word):
    # 把word加进embedding  并赋值一个随机向量
    vector = torch.empty(1,self.embedding_dim) #return a tensor filled with uninitialed dada. shape is  (1*embedding_dim)
    #从均匀分布U(a,b)中生成值,填充参数vector,默认a=0,b=1
    torch.nn.init.uniform_(vector)
    self.word2idx[word] = len(self.word2idx)  #为word2idx字典填充后,word2idx长度会加1
    self.idx2word.append(word)
    print("word:",word)
    # torch.cat是将两个张量(tensor)拼接在一起    按维数0拼接(竖着拼)
    self.embedding_matrix = torch.cat([self.embedding_matrix,vector],0)
    print("embedding_matrix.shape",self.embedding_matrix.shape)
  
  def make_embedding(self,load=True):
    print("get embedding..")
    #加载embedding模型
    if load:
      print("加载word to vec模型")
      self.get_w2v_model()
    else:
      raise NotImplementedError

    # 制作一个word2idx的字典
    # 制作一个idx2word的list
    # 制作一个word2vector的list
    for i,word in enumerate(self.embedding.wv.key_to_index ):
      print('get words #{}'.format(i+1), end='\r')
      # 例:self.word2idx['李']=1
      # self.idx2word[1]='李'
      # self.vector[1]='李'
      self.word2idx[word]=len(self.word2idx)
      self.idx2word.append(word)
      self.embedding_matrix.append(self.embedding.wv[word])
    # 将embedding_matrix转为tensor类型
    self.embedding_matrix = torch.tensor(self.embedding_matrix)
    # 将PAD和UNK加入embedding中
    self.add_embedding("")
    self.add_embedding("")
    print("total words: {}".format(len(self.embedding_matrix)))
    return self.embedding_matrix

  def pad_sequence(self,sentence):
    # 将每个句子变成统一的长度
    if len(sentence)>self.sen_len:
      sentence = sentence[:self.sen_len]  #截断
    else:
      pad_len = self.sen_len-len(sentence)
      for _ in range(pad_len):
        sentence.append(self.word2idx[""])
    assert len(sentence)==self.sen_len
    return sentence

  def sentence_word2idx(self):
    # 把句子里面的字转成对应的index
    sentence_list = []
    for i,sen in enumerate(self.sentences):
      print('sentence count #{}'.format(i+1), end='\r')
      sentence_idx = []
      for word in sen:
        if(word in self.word2idx.keys()):
          sentence_idx.append(self.word2idx[word])
        else:
          sentence_idx.append(self.word2idx[""])
      # 把每个句子长度统一
      sentence_idx = self.pad_sequence(sentence_idx)
      sentence_list.append(sentence_idx)
    return torch.LongTensor(sentence_list)

  def labels_to_tensor(self,y):
    #把标签label也转为tensor
    y = [int(label) for label in y]
    return torch.LongTensor(y)

def train_word2vec(x):
  # 训练word embedding
  """
  Embedding 层的输入是一个二维整数张量, 形状为(samples,sequence_length),即(样本数,序列长度)
  Embedding 层输出是(samples,sequence_length,embedding_dimensionality) 的三维浮点数张量。
  """
  model = word2vec.Word2Vec(x,vector_size=250,window=5,min_count=5,workers=12,epochs=10,sg=1) #iter is epochs
  return model

你可能感兴趣的:(nlp,深度学习,自然语言处理,python,循环神经网络)