CIKM2021推荐系统论文集锦

嘿,记得给“机器学习与推荐算法”添加星标


第30届信息和知识管理国际会议(CIKM)将于2021年11月1日-5日在线上和线下的澳大利亚昆士兰黄金海岸同时举行。CIKM会议是数据库/数据挖掘/内容检索领域顶级国际会议,也是中国计算机学会规定的CCF B类会议。

其中本届会议长文共收到投稿1251篇,其中录用论文271篇,录取率约为21.7%;应用长文共有290篇有效投稿,其中69篇论文被接收,接受率为24%;资源型论文共有80篇有效投稿,其中26篇论文被接收,接收率为32.5%;短文共845篇有效投稿,其中177论文被接收,接受率为20.9%。

本文主要是从教程以及上述提到的资源型论文、长文、短文中筛选出与推荐系统有关的论文供大家学习,其中与推荐系统有关的教程1项、资源型文章2项、长文41项、应用型文章11项和短文21项。另外涉及到众多推荐系统领域的子方向,比如经典的协同过滤、会话推荐、冷启动问题、大规模推荐问题、基于图神经网络的推荐系统、基于强化学习的推荐系统、基于自监督学习的推荐系统等。

Tutorials

本会议带来的教程之一为推荐系统中的机器学习公平性问题,具体标题与作者信息如下。

  • CIKM 2021 Tutorial on Fairness of Machine Learning in Recommender Systems - Yunqi Li (Rutgers University, USA), Yingqiang Ge (Rutgers University, USA), Yongfeng Zhang (Rutgers University, USA)

Resource Papers

本会议中关于资源型论文主要是两篇,一篇是Robin Burke大牛带来的librec-auto,一篇是赵鑫老师组带来的RecBole。

  • librec-auto: A Tool for Recommender Systems Experimentation

  • RecBole: Towards a Unified, Comprehensive and Efficient Framework for Recommendation Algorithms

Full Papers

本会议所接收的长文主要是关注在经典的协同过滤技术、冷启动问题、序列化推荐、基于强化学习的推荐、基于图神经网络的推荐、基于自监督的推荐。应用的场景包括音乐推荐、POI推荐、短视频推荐、组推荐、社会化推荐、新闻推荐等。

  • SimpleX: A Simple and Strong Baseline for Collaborative Filtering

  • LT-OCF: Learnable-Time ODE-based Collaborative Filtering

  • Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

  • Incremental Graph Convolutional Network for Collaborative Filtering

  • Top-N Recommendation with Counterfactual User Preference Simulation

  • Counterfactual Review-based Recommendation

  • Reinforcement Learning to Optimize Lifetime Value in Cold-Start Recommendation

  • Zero Shot on the Cold-Start Problem: Model-Agnostic Interest Learning for Recommender Systems

  • Multi-hop Reading on Memory Neural Network with Selective Coverage for Medication Recommendation

  • How Powerful is Graph Convolution for Recommendation?

  • CBML: A Cluster-based Meta-learning Model for Session-based Recommendation

  • CMML: Contextual Modulation Meta Learning for Cold-Start Recommendation

  • Seq2Bubbles: Region-Based Embedding Learning for User Behaviors in Sequential Recommenders

  • Enhancing User Interest Modeling with Knowledge-Enriched Itemsets for Sequential Recommendation

  • Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

  • Extracting Attentive Social Temporal Excitation for Sequential Recommendation

  • Learning An End-to-End Structure for Retrieval in Large-Scale Recommendations

  • Conditional Graph Attention Networks for Distilling and Refining Knowledge Graphs in Recommendation

  • Self-Supervised Graph Co-Training for Session-based Recommendation

  • Answering POI-recommendation Questions using Tourism Reviews

  • Semi-deterministic and Contrastive Variational Graph Autoencoder for Recommendation

  • Generative Inverse Deep Reinforcement Learning for Online Recommendation

  • SeeQuery: An Automatic Method for Recommending Translations of Ontology Competency Questions into SPARQL-OWL

  • WG4Rec: Modeling Textual Content with Word Graph for News Recommendation

  • SNPR: A Serendipity-Oriented Next POI Recommendation Model

  • Hyperbolic Hypergraphs for Sequential Recommendation

  • Learning Dual Dynamic Representations on Time-Sliced User-Item Interaction Graphs for Sequential Recommendation

  • A Knowledge-Aware Recommender with Attention-Enhanced Dynamic Convolutional Network

  • Lightweight Self-Attentive Sequential Recommendation

  • Expanding Relationship for Cross Domain Recommendation

  • Concept-Aware Denoising Graph Neural Network for Micro-Video Recommendation

  • Popularity-Enhanced News Recommendation with Multi-View Interest Representation

  • Social Recommendation with Self-Supervised Metagraph Informax Network

  • USER: A Unified Information Search and Recommendation Model based on Integrated Behavior Sequence

  • Double-Scale Self-Supervised Hypergraph Learning for Group Recommendation

  • Disentangling Preference Representations for Recommendation Critiquing with ?-VAE

  • Popcorn: Human-in-the-loop Popularity Debiasing in Conversational Recommender Systems

  • Cross-Market Product Recommendation

  • Counterfactual Explainable Recommendation

  • UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation

  • Answering POI-recommendation Questions using Tourism Reviews

Short Papers

本会议的短文基本与长文所关注的问题类似,在此不再赘述。

  • Anchor-based Collaborative Filtering for Recommender Systems

  • Causally Attentive Collaborative Filtering

  • XPL-CF: Explainable Embeddings for Feature-based Collaborative Filtering

  • Vector-Quantized Autoencoder With Copula for Collaborative Filtering

  • Entity-aware Collaborative Relation Network with Knowledge Graph for Recommendation

  • Time-Aware Recommender System via Continuous-Time Modeling

  • ST-PIL: Spatial-Temporal Periodic Interest Learning for Next Point-of-Interest Recommendation

  • Low-dimensional Alignment for Cross-Domain Recommendation

  • GLocal-K: Global and Local Kernels for Recommender Systems

  • A Formal Analysis of Recommendation Quality of Adversarially-trained Recommenders

  • Fully Hyperbolic Graph Convolution Network for Recommendation

  • Dual Correction Strategy for Ranking Distillation in Top-N Recommender System

  • DeepGroup: Group Recommendation with Implicit Feedback

  • DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation with Relational GNN

  • Modeling Sequences as Distributions with Uncertainty for Sequential Recommendation

  • Review-Aware Neural Recommendation with Cross-Modality Mutual Attention

  • Locker: Locally Constrained Self-Attentive Sequential Recommendation

  • SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item Recommendation

  • Graph Structure Aware Contrastive Knowledge Distillation for Incremental Learning in Recommender Systems

  • Structure Aware Experience Replay for Incremental Learning in Graph-based Recommender Systems

  • CauSeR: Causal Session-based Recommendations for Handling Popularity Bias

Applied Papers

本会议所接收的应用型文章与研究型文章的关注点不同,其主要是放在了大规模推荐场景、可解释性、多样性、公平性以及轻量化等提升用户体验的方面。

  • Explore, Filter and Distill: Distilled Reinforcement Learning in Recommendation

  • Dual Learning for Query Generation and Query Selection in Query Feeds Recommendation

  • On the Diversity and Explainability of Recommender Systems: A Practical Framework for Enterprise App Recommendation

  • One Model to Serve All: Star Topology Adaptive Recommender for Multi-Domain CTR Prediction

  • CausCF: Causal Collaborative Filtering for Recommendation Effect Estimation

  • Fulfillment-Time-Aware Personalized Ranking for On-Demand Food Recommendation

  • SAR-Net: A Scenario-Aware Ranking Network for Personalized Fair Recommendation in Hundreds of Travel Scenarios

  • You Are What and Where You Are: Graph Enhanced Attention Network for Explainable POI Recommendation

  • Self-supervised Learning for Large-scale Item Recommendations

  • LightMove: A Lightweight Next-POI Recommendation for Taxicab Rooftop Advertising

  • Algorithmic Balancing of Familiarity, Similarity, & Discovery in Music Recommendations

推荐阅读

MM2020 | 基于对抗学习的个性化标签推荐

一文浏览近期推荐系统领域最新文献

RecSys2021推荐系统论文集锦

喜欢的话点个在看吧

你可能感兴趣的:(人工智能,机器学习,python,编程语言,推荐系统)