超简单的人脸识别(python3.9+openCV)

收集人脸数据

# -----获取人脸样本-----
import cv2

# 调用笔记本内置摄像头,参数为0,如果有其他的摄像头可以调整参数为1,2
# cap = cv2.VideoCapture('H:/python/FaceRec/lxw.mp4')
cap = cv2.VideoCapture(700)
# 调用人脸分类器,要根据实际路径调整3
face_detector = cv2.CascadeClassifier(r'H:\\python\\FaceRec\\haarcascade_frontalface_default.xml')  # 待更改
# 为即将录入的脸标记一个id
face_id = input('\n User data input,Look at the camera and wait ...')
# sampleNum用来计数样本数目
count = 0

while True:
    # 从摄像头读取图片
    success, img = cap.read()
    # 转为灰度图片,减少程序符合,提高识别度
    if success is True:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    else:
        break
    # 检测人脸,将每一帧摄像头记录的数据带入OpenCv中,让Classifier判断人脸
    # 其中gray为要检测的灰度图像,1.3为每次图像尺寸减小的比例,5为minNeighbors
    faces = face_detector.detectMultiScale(gray, 1.3, 5)

    # 框选人脸,for循环保证一个能检测的实时动态视频流
    for (x, y, w, h) in faces:
        # xy为左上角的坐标,w为宽,h为高,用rectangle为人脸标记画框
        cv2.rectangle(img, (x, y), (x + w, y + w), (255, 0, 0))
        # 成功框选则样本数增加
        count += 1
        # 保存图像,把灰度图片看成二维数组来检测人脸区域
        # (这里是建立了data的文件夹,当然也可以设置为其他路径或者调用数据库)
        cv2.imwrite("H:\\python\\FaceRec\\data\\User." + str(face_id) + '.' + str(count) + '.jpg', gray[y:y + h, x:x + w])
        # 显示图片
        cv2.imshow('image', img)
        # 保持画面的连续。waitkey方法可以绑定按键保证画面的收放,通过q键退出摄像
    k = cv2.waitKey(1)
    if k == '27':
        break
        # 或者得到800个样本后退出摄像,这里可以根据实际情况修改数据量,实际测试后800张的效果是比较理想的
    elif count >= 800:
        break

# 关闭摄像头,释放资源
cap.realease()
cv2.destroyAllWindows()

导入CV包。超简单的人脸识别(python3.9+openCV)_第1张图片

添加 haarcascade_frontalface_default.xml。

超简单的人脸识别(python3.9+openCV)_第2张图片

遇到的问题:pycharm 语法出现了cannot find reference '__init__.py'解决办法

超简单的人脸识别(python3.9+openCV)_第3张图片cv2里面的 cv2.cp38-win_amd64.pyd 放到 site-packages里解决了。

报错原因是因为文件路径的格式表达不对,需要用"//"进行分开。

超简单的人脸识别(python3.9+openCV)_第4张图片

训练识别器

# -----建立模型、创建数据集-----

import os
import cv2
import numpy as np
from PIL import Image

# 导入pillow库,用于处理图像
# 设置之前收集好的数据文件路径
path = 'H:\\python\\FaceRec\\data'

# 初始化识别的方法
recog = cv2.face.LBPHFaceRecognizer_create()

# 调用熟悉的人脸分类器
detector = cv2.CascadeClassifier('H:\\python\\FaceRec\\haarcascade_frontalface_default.xml')


# 创建一个函数,用于从数据集文件夹中获取训练图片,并获取id
# 注意图片的命名格式为User.id.sampleNum
def get_images_and_labels(path):
    image_paths = [os.path.join(path, f) for f in os.listdir(path)]
    # 新建连个list用于存放
    face_samples = []
    ids = []

    # 遍历图片路径,导入图片和id添加到list中
    for image_path in image_paths:

        # 通过图片路径将其转换为灰度图片
        img = Image.open(image_path).convert('L')

        # 将图片转化为数组
        img_np = np.array(img, 'uint8')

        if os.path.split(image_path)[-1].split(".")[-1] != 'jpg':
            continue

        # 为了获取id,将图片和路径分裂并获取
        id = int(os.path.split(image_path)[-1].split(".")[1])
        faces = detector.detectMultiScale(img_np)

        # 将获取的图片和id添加到list中
        for (x, y, w, h) in faces:
            face_samples.append(img_np[y:y + h, x:x + w])
            ids.append(id)
    return face_samples, ids


# 调用函数并将数据喂给识别器训练
print('Training...')
faces, ids = get_images_and_labels(path)
# 训练模型
recog.train(faces, np.array(ids))
# 保存模型
recog.save('H:\\python\\FaceRec\\trainner/trainner.yml')

识别

# -----检测、校验并输出结果-----
import cv2

# 准备好识别方法
recognizer = cv2.face.LBPHFaceRecognizer_create()

# 使用之前训练好的模型
recognizer.read('H:\\python\\FaceRec\\trainner/trainner.yml')

# 再次调用人脸分类器
cascade_path = "H:/python/FaceRec/haarcascade_frontalface_default.xml"
face_cascade = cv2.CascadeClassifier(cascade_path)

# 加载一个字体,用于识别后,在图片上标注出对象的名字
font = cv2.FONT_HERSHEY_SIMPLEX

idnum = 0
# 设置好与ID号码对应的用户名,如下,如0对应的就是初始

names = ['初始', 'Lingxianwwen', 'user1', 'user2', 'user3']

# 调用摄像头
cam = cv2.VideoCapture(0)
minW = 0.1 * cam.get(3)
minH = 0.1 * cam.get(4)

while True:
    ret, img = cam.read()
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 识别人脸
    faces = face_cascade.detectMultiScale(
        gray,
        scaleFactor=1.2,
        minNeighbors=5,
        minSize=(int(minW), int(minH))
    )
    # 进行校验
    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
        idnum, confidence = recognizer.predict(gray[y:y + h, x:x + w])

        # 计算出一个检验结果
        if confidence < 100:
            idum = names[idnum]
            confidence = "{0}%", format(round(100 - confidence))
        else:
            idum = "unknown"
            confidence = "{0}%", format(round(100 - confidence))

        # 输出检验结果以及用户名
        cv2.putText(img, str(idum), (x + 5, y - 5), font, 1, (0, 0, 255), 1)
        cv2.putText(img, str(confidence), (x + 5, y + h - 5), font, 1, (0, 0, 0), 1)

        # 展示结果
        cv2.imshow('camera', img)
        k = cv2.waitKey(20)
        if k == 27:
            break

# 释放资源
cam.release()
cv2.destroyAllWindows()

 超简单的人脸识别(python3.9+openCV)_第5张图片

 完成识别。

你可能感兴趣的:(机器学习,pycharm,python,opencv)