下文实验需要的yaml文件和压缩包可加我微信获取
微信: luckylucky421302
Prometheus是一个开源的系统监控和报警系统,现在已经加入到CNCF基金会,成为继k8s之后第二个在CNCF托管的项目,在kubernetes容器管理系统中,通常会搭配prometheus进行监控,同时也支持多种exporter采集数据,还支持pushgateway进行数据上报,Prometheus性能足够支撑上万台规模的集群。
1.多维度数据模型
时间序列数据由metrics名称和键值对来组成
可以对数据进行聚合,切割等操作
所有的metrics都可以设置任意的多维标签。
2.灵活的查询语言(PromQL)
可以对采集的metrics指标进行加法,乘法,连接等操作;
3.可以直接在本地部署,不依赖其他分布式存储;
4.通过基于HTTP的pull方式采集时序数据;
5.可以通过中间网关pushgateway的方式把时间序列数据推送到prometheus server端;
6.可通过服务发现或者静态配置来发现目标服务对象(targets)。
7.有多种可视化图像界面,如Grafana等。
8.高效的存储,每个采样数据占3.5 bytes左右,300万的时间序列,30s间隔,保留60天,消耗磁盘大概200G。
9.做高可用,可以对数据做异地备份,联邦集群,部署多套prometheus,pushgateway上报数据
从上图可发现,Prometheus整个生态圈组成主要包括prometheus server,Exporter,pushgateway,alertmanager,grafana,Web ui界面,Prometheusserver由三个部分组成,Retrieval,Storage,PromQL
1.Retrieval负责在活跃的target主机上抓取监控指标数据
2.Storage存储主要是把采集到的数据存储到磁盘中
3.PromQL是Prometheus提供的查询语言模块。
1.PrometheusServer:
用于收集和存储时间序列数据。
2.ClientLibrary:
客户端库,检测应用程序代码,当Prometheus抓取实例的HTTP端点时,客户端库会将所有跟踪的metrics指标的当前状态发送到prometheus server端。
3.Exporters:
prometheus支持多种exporter,通过exporter可以采集metrics数据,然后发送到prometheus server端,所有向promtheus server提供监控数据的程序都可以被称为exporter
4.Alertmanager:
从 Prometheusserver 端接收到 alerts 后,会进行去重,分组,并路由到相应的接收方,发出报警,常见的接收方式有:电子邮件,微信,钉钉, slack等。
5.Grafana:
监控仪表盘,可视化监控数据
6.pushgateway:
各个目标主机可上报数据到pushgatewy,然后prometheus server统一从pushgateway拉取数据。
基本HA模式
基本的HA模式只能确保Promthues服务的可用性问题,但是不解决Prometheus Server之间的数据一致性问题以及持久化问题(数据丢失后无法恢复),也无法进行动态的扩展。因此这种部署方式适合监控规模不大,Promthues Server也不会频繁发生迁移的情况,并且只需要保存短周期监控数据的场景。
基本HA + 远程存储方案
在解决了Promthues服务可用性的基础上,同时确保了数据的持久化,当Promthues Server发生宕机或者数据丢失的情况下,可以快速的恢复。同时PromthuesServer可能很好的进行迁移。因此,该方案适用于用户监控规模不大,但是希望能够将监控数据持久化,同时能够确保PromthuesServer的可迁移性的场景。
基本HA + 远程存储 + 联邦集群方案
Promthues的性能瓶颈主要在于大量的采集任务,因此用户需要利用Prometheus联邦集群的特性,将不同类型的采集任务划分到不同的Promthues子服务中,从而实现功能分区。例如一个Promthues Server负责采集基础设施相关的监控指标,另外一个Prometheus Server负责采集应用监控指标。再有上层Prometheus Server实现对数据的汇聚。
1.1.5 prometheus工作流程
1. Prometheus server可定期从活跃的(up)目标主机上(target)拉取监控指标数据,目标主机的监控数据可通过配置静态job或者服务发现的方式被prometheus server采集到,这种方式默认的pull方式拉取指标;也可通过pushgateway把采集的数据上报到prometheus server中;还可通过一些组件自带的exporter采集相应组件的数据;
2.Prometheus server把采集到的监控指标数据保存到本地磁盘或者数据库;
3.Prometheus采集的监控指标数据按时间序列存储,通过配置报警规则,把触发的报警发送到alertmanager
4.Alertmanager通过配置报警接收方,发送报警到邮件,微信或者钉钉等
5.Prometheus 自带的web ui界面提供PromQL查询语言,可查询监控数据
6.Grafana可接入prometheus数据源,把监控数据以图形化形式展示出
1.1.6 prometheus如何更好的监控k8s?
对于Kubernetes而言,我们可以把当中所有的资源分为几类:
1、基础设施层(Node):集群节点,为整个集群和应用提供运行时资源
2、容器基础设施(Container):为应用提供运行时环境
3、用户应用(Pod):Pod中会包含一组容器,它们一起工作,并且对外提供一个(或者一组)功能
4、内部服务负载均衡(Service):在集群内,通过Service在集群暴露应用功能,集群内应用和应用之间访问时提供内部的负载均衡
5、外部访问入口(Ingress):通过Ingress提供集群外的访问入口,从而可以使外部客户端能够访问到部署在Kubernetes集群内的服务
因此,在不考虑Kubernetes自身组件的情况下,如果要构建一个完整的监控体系,我们应该考虑,以下5个方面:
1、集群节点状态监控:从集群中各节点的kubelet服务获取节点的基本运行状态;
2、集群节点资源用量监控:通过Daemonset的形式在集群中各个节点部署Node
Exporter采集节点的资源使用情况;
3、节点中运行的容器监控:通过各个节点中kubelet内置的cAdvisor中获取个节点中所有容器的运行状态和资源使用情况;
4、从黑盒监控的角度在集群中部署Blackbox Exporter探针服务,检测Service和Ingress的可用性;
5、如果在集群中部署的应用程序本身内置了对Prometheus的监控支持,那么我们还应该找到相应的Pod实例,并从该Pod实例中获取其内部运行状态的监控指标。
1.2 安装采集节点资源指标组件node-exporter
node-exporter是什么?
采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包括CPU, 内存,磁盘,网络,文件数等信息。
安装node-exporter组件,在k8s集群的控制节点操作
[root@master1 ~]# kubectl create ns monitor-sa
namespace/monitor-sa created
把课件里的node-exporter.tar.gz镜像压缩包上传到k8s的各个节点,手动解压:
docker load -i node-exporter.tar.gz
node-export.yaml文件在课件,可自行上传到自己k8s的控制节点,内容如下:
[root@master1 ~]# cat node-export.yaml
#通过kubectl apply更新node-exporter
[root@master1 ~]# kubectl apply -f node-export.yaml
daemonset.apps/node-exporter created
#查看node-exporter是否部署成功
[root@master1 ~]# kubectl get pods -n monitor-sa
NAME READY STATUS RESTARTS AGE
node-exporter-7cjhw 1/1 Running 0 22s
node-exporter-8m2fp 1/1 Running 0 22s
node-exporter-c6sdq 1/1 Running 0 22s
通过node-exporter采集数据
curl http://主机ip:9100/metrics
#node-export默认的监听端口是9100,可以看到当前主机获取到的所有监控数据
curl http://192.168.40.130:9100/metrics | grep node_cpu_seconds
显示192.168.40.130主机cpu的使用情况
# HELP node_cpu_seconds_total Seconds the cpus spent in each mode.
# TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="0",mode="idle"} 72963.37
node_cpu_seconds_total{cpu="0",mode="iowait"} 9.35
node_cpu_seconds_total{cpu="0",mode="irq"} 0
node_cpu_seconds_total{cpu="0",mode="nice"} 0
node_cpu_seconds_total{cpu="0",mode="softirq"} 151.4
node_cpu_seconds_total{cpu="0",mode="steal"} 0
node_cpu_seconds_total{cpu="0",mode="system"} 656.12
node_cpu_seconds_total{cpu="0",mode="user"} 267.1
#HELP:解释当前指标的含义,上面表示在每种模式下node节点的cpu花费的时间,以s为单位
#TYPE:说明当前指标的数据类型,上面是counter类型
node_cpu_seconds_total{cpu="0",mode="idle"} :
cpu0上idle进程占用CPU的总时间,CPU占用时间是一个只增不减的度量指标,从类型中也可以看出node_cpu的数据类型是counter(计数器)
counter计数器:只是采集递增的指标
curl http://192.168.40.130:9100/metrics | grep node_load
# HELP node_load1 1m load average.
# TYPE node_load1 gauge
node_load1 0.1
node_load1该指标反映了当前主机在最近一分钟以内的负载情况,系统的负载情况会随系统资源的使用而变化,因此node_load1反映的是当前状态,数据可能增加也可能减少,从注释中可以看出当前指标类型为gauge(标准尺寸)
gauge标准尺寸:统计的指标可增加可减少
1.3 在k8s集群中安装Prometheus server服务
1.3.1 创建sa账号
#在k8s集群的控制节点操作,创建一个sa账号
[root@master1 ~]# kubectl create serviceaccount monitor -n monitor-sa
serviceaccount/monitor created
#把sa账号monitor通过clusterrolebing绑定到clusterrole上
[root@master1 ~]# kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor
1.3.2 创建数据目录
#在node1作节点创建存储数据的目录:
[root@node1 ~]# mkdir /data
[root@node1 ~]# chmod 777 /data/
1.3.3 安装prometheus服务
以下步骤均在k8s集群的控制节点操作:
创建一个configmap存储卷,用来存放prometheus配置信息
prometheus-cfg.yaml文件在课件,可自行上传到自己k8s的控制节点,内容如下:
[root@master1 ~]# cat prometheus-cfg.yaml
#通过kubectl apply更新configmap
[root@master1 ~]# kubectl apply -f prometheus-cfg.yaml
configmap/prometheus-config created
通过deployment部署prometheus
安装prometheus server需要的镜像prometheus-2-2-1.tar.gz在课件,上传到k8s的工作节点node1上,手动解压:
docker load -i prometheus-2-2-1.tar.gz
prometheus-deploy.yaml文件在课件,上传到自己的k8s的控制节点,内容如下:
[root@master1 ~]# cat prometheus-deploy.yaml
注意:在上面的prometheus-deploy.yaml文件有个nodeName字段,这个就是用来指定创建的这个prometheus的pod调度到哪个节点上,我们这里让nodeName=node1,也即是让pod调度到node1节点上,因为node1节点我们创建了数据目录/data,所以大家记住:你在k8s集群的哪个节点创建/data,就让pod调度到哪个节点。
#通过kubectl apply更新prometheus
[root@master1 ~]# kubectl apply -f prometheus-deploy.yaml
deployment.apps/prometheus-server created
#查看prometheus是否部署成功
[root@master1 ~]# kubectl get pods -n monitor-sa
NAME READY STATUS RESTARTS AGE
node-exporter-7cjhw 1/1 Running 0 6m33s
node-exporter-8m2fp 1/1 Running 0 6m33s
node-exporter-c6sdq 1/1 Running 0 6m33s
prometheus-server-6fffccc6c9-bhbpz 1/1 Running 0 26s
给prometheus pod创建一个service
prometheus-svc.yaml文件在课件,可上传到k8s的控制节点,内容如下:
cat prometheus-svc.yaml
---
apiVersion: v1
kind: Service
metadata:
name: prometheus
namespace: monitor-sa
labels:
app: prometheus
spec:
type: NodePort
ports:
- port: 9090
targetPort: 9090
protocol: TCP
selector:
app: prometheus
component: server
#通过kubectl apply 更新service
[root@master1 ~]# kubectl apply -f prometheus-svc.yaml
service/prometheus created
#查看service在物理机映射的端口
[root@master1 ~]# kubectl get svc -n monitor-sa
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
prometheus NodePort 10.103.98.225 9090:30009/TCP 27s
通过上面可以看到service在宿主机上映射的端口是30009,这样我们访问k8s集群的控制节点的ip:30009,就可以访问到prometheus的web ui界面了
#访问prometheus web ui界面
火狐浏览器输入如下地址:
http://192.168.40.130:30009/graph
可看到如下页面:
1.4 安装和配置可视化UI界面Grafana
安装Grafana需要的镜像heapster-grafana-amd64_v5_0_4.tar.gz在课件里,把镜像上传到k8s的各个控制节点和k8s的各个工作节点,然后在各个节点手动解压:
docker load -i heapster-grafana-amd64_v5_0_4.tar.gz
grafana.yaml文件在课件里,可上传到k8s的控制节点,内容如下:
[root@master1 ~]# cat grafana.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: monitoring-grafana
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
task: monitoring
k8s-app: grafana
template:
metadata:
labels:
task: monitoring
k8s-app: grafana
spec:
containers:
- name: grafana
image: k8s.gcr.io/heapster-grafana-amd64:v5.0.4
ports:
- containerPort: 3000
protocol: TCP
volumeMounts:
- mountPath: /etc/ssl/certs
name: ca-certificates
readOnly: true
- mountPath: /var
name: grafana-storage
env:
- name: INFLUXDB_HOST
value: monitoring-influxdb
- name: GF_SERVER_HTTP_PORT
value: "3000"
# The following env variables are required to make Grafana accessible via
# the kubernetes api-server proxy. On production clusters, we recommend
# removing these env variables, setup auth for grafana, and expose the grafana
# service using a LoadBalancer or a public IP.
- name: GF_AUTH_BASIC_ENABLED
value: "false"
- name: GF_AUTH_ANONYMOUS_ENABLED
value: "true"
- name: GF_AUTH_ANONYMOUS_ORG_ROLE
value: Admin
- name: GF_SERVER_ROOT_URL
# If you're only using the API Server proxy, set this value instead:
# value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
value: /
volumes:
- name: ca-certificates
hostPath:
path: /etc/ssl/certs
- name: grafana-storage
emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
labels:
# For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
# If you are NOT using this as an addon, you should comment out this line.
kubernetes.io/cluster-service: 'true'
kubernetes.io/name: monitoring-grafana
name: monitoring-grafana
namespace: kube-system
spec:
# In a production setup, we recommend accessing Grafana through an external Loadbalancer
# or through a public IP.
# type: LoadBalancer
# You could also use NodePort to expose the service at a randomly-generated port
# type: NodePort
ports:
- port: 80
targetPort: 3000
selector:
k8s-app: grafana
type: NodePort
#更新yaml文件
[root@master1 ~]# kubectl apply -f grafana.yaml
deployment.apps/monitoring-grafana created
service/monitoring-grafana created
#验证是否安装成功
[root@master1 ~]# kubectl get pods -n kube-system| grep monitor
monitoring-grafana-675798bf47-4rp2b 1/1 Running 0
#查看grafana前端的service
[root@master1 ~]# kubectl get svc -n kube-system | grep grafana
monitoring-grafana NodePort 10.100.56.76 80:30989/TCP
#登陆grafana,在浏览器访问
192.168.40.130:30989
可看到如下界面:
#配置grafana界面
开始配置grafana的web界面:
选择Create your first data source
出现如下
Name:Prometheus
Type:Prometheus
HTTP 处的URL如下:
http://prometheus.monitor-sa.svc:9090
配置好的整体页面如下:
点击左下角Save& Test,出现如下Data source is working,说明prometheus数据源成功的被grafana接入了:
导入监控模板,可在如下链接搜索
https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes
可直接导入node_exporter.json监控模板,这个可以把node节点指标显示出来
node_exporter.json在课件里,也可直接导入docker_rev1.json,这个可以把容器资源指标显示出来,node_exporter.json和docker_rev1.json都在课件里
怎么导入监控模板,按如下步骤
上面Save& Test测试没问题之后,就可以返回Grafana主页面
点击左侧+号下面的Import
出现如下界面:
选择Upload json file,出现如下
选择一个本地的json文件,我们选择的是上面让大家下载的node_exporter.json这个文件,选择之后出现如下:
注:箭头标注的地方Name后面的名字是node_exporter.json定义的
Prometheus后面需要变成Prometheus,然后再点击Import,就可以出现如下界面:
导入docker_rev1.json监控模板,步骤和上面导入node_exporter.json步骤一样,导入之后显示如下:
1.5 kube-state-metrics组件解读
1.5.1 什么是kube-state-metrics?
kube-state-metrics通过监听API Server生成有关资源对象的状态指标,比如Deployment、Node、Pod,需要注意的是kube-state-metrics只是简单的提供一个metrics数据,并不会存储这些指标数据,所以我们可以使用Prometheus来抓取这些数据然后存储,主要关注的是业务相关的一些元数据,比如Deployment、Pod、副本状态等;调度了多少个replicas?现在可用的有几个?多少个Pod是running/stopped/terminated状态?Pod重启了多少次?我有多少job在运行中。
1.5.2 安装和配置kube-state-metrics
创建sa,并对sa授权
在k8s的控制节点生成一个kube-state-metrics-rbac.yaml文件,kube-state-metrics-rbac.yaml文件在课件,大家自行下载到k8s的控制节点即可,内容如下:
[root@master1 ~]# cat kube-state-metrics-rbac.yaml
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: kube-state-metrics
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: kube-state-metrics
rules:
- apiGroups: [""]
resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
verbs: ["list", "watch"]
- apiGroups: ["extensions"]
resources: ["daemonsets", "deployments", "replicasets"]
verbs: ["list", "watch"]
- apiGroups: ["apps"]
resources: ["statefulsets"]
verbs: ["list", "watch"]
- apiGroups: ["batch"]
resources: ["cronjobs", "jobs"]
verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
resources: ["horizontalpodautoscalers"]
verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: kube-state-metrics
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kube-state-metrics
subjects:
- kind: ServiceAccount
name: kube-state-metrics
namespace: kube-system
通过kubectl apply更新yaml文件
[root@master1 ~]# kubectl apply -f kube-state-metrics-rbac.yaml
serviceaccount/kube-state-metrics created
clusterrole.rbac.authorization.k8s.io/kube-state-metrics created
clusterrolebinding.rbac.authorization.k8s.io/kube-state-metrics created
安装kube-state-metrics组件
安装kube-state-metrics组件需要的镜像在课件,可上传到k8s各个工作节点,手动解压:
docker load -i kube-state-metrics_1_9_0.tar.gz
在k8s的master1节点生成一个kube-state-metrics-deploy.yaml文件,kube-state-metrics-deploy.yaml在课件,可自行下载,内容如下:
[root@master1 ~]# cat kube-state-metrics-deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: kube-state-metrics
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
app: kube-state-metrics
template:
metadata:
labels:
app: kube-state-metrics
spec:
serviceAccountName: kube-state-metrics
containers:
- name: kube-state-metrics
image: quay.io/coreos/kube-state-metrics:v1.9.0
ports:
- containerPort: 8080
通过kubectl apply更新yaml文件
[root@master1 ~]# kubectl apply -f kube-state-metrics-deploy.yaml
deployment.apps/kube-state-metrics created
查看kube-state-metrics是否部署成功
[root@master1 ~]# kubectl get pods -n kube-system -l app=kube-state-metrics
NAME READY STATUS RESTARTS AGE
kube-state-metrics-58d4957bc5-9thsw 1/1 Running 0 30s
创建service
在k8s的控制节点生成一个kube-state-metrics-svc.yaml文件,kube-state-metrics-svc.yaml文件在课件,可上传到k8s的控制节点,内容如下:
[root@master1 ~]# cat kube-state-metrics-svc.yaml
apiVersion: v1
kind: Service
metadata:
annotations:
prometheus.io/scrape: 'true'
name: kube-state-metrics
namespace: kube-system
labels:
app: kube-state-metrics
spec:
ports:
- name: kube-state-metrics
port: 8080
protocol: TCP
selector:
app: kube-state-metrics
通过kubectl apply更新yaml
[root@master1 ~]# kubectl apply -f kube-state-metrics-svc.yaml
service/kube-state-metrics created
查看service是否创建成功
[root@master1 ~]# kubectl get svc -n kube-system | grep kube-state-metrics
kube-state-metrics ClusterIP 10.105.160.224 8080/TCP
在grafana web界面导入Kubernetes Cluster (Prometheus)-1577674936972.json和Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json,Kubernetes Cluster (Prometheus)-1577674936972.json和Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json文件在课件
导入Kubernetes Cluster (Prometheus)-1577674936972.json之后出现如下页面
在grafana web界面导入Kubernetes cluster monitoring(via Prometheus) (k8s 1.16)-1577691996738.json,出现如下页面
1.6 安装和配置Alertmanager-发送报警到qq邮箱
在k8s的master1节点创建alertmanager-cm.yaml文件,alertmanager-cm.yaml文件在课件,可直接从课件传到k8s的master1节点,内容如下:
[root@master1 ~]# cat alertmanager-cm.yaml
kind: ConfigMap
apiVersion: v1
metadata:
name: alertmanager
namespace: monitor-sa
data:
alertmanager.yml: |-
global:
resolve_timeout: 1m
smtp_smarthost: 'smtp.163.com:25'
smtp_from: '1501157****@163.com'
smtp_auth_username: '1501157****'
smtp_auth_password: ' FLWYKIDBNBAIFFXV
smtp_require_tls: false
route: #用于配置告警分发策略
group_by: [alertname] # 采用哪个标签来作为分组依据
group_wait: 10s # 组告警等待时间。也就是告警产生后等待10s,如果有同组告警一起发出
group_interval: 10s # 两组告警的间隔时间
repeat_interval: 10m # 重复告警的间隔时间,减少相同邮件的发送频率
receiver: default-receiver # 设置默认接收人
receivers:
- name: 'default-receiver'
email_configs:
- to: '1980570***@qq.com'
send_resolved: true
alertmanager配置文件解释说明:
smtp_smarthost: 'smtp.163.com:25'
#用于发送邮件的邮箱的SMTP服务器地址+端口
smtp_from: '1501157****@163.com'
#这是指定从哪个邮箱发送报警
smtp_auth_username: '1501157****'
#这是发送邮箱的认证用户,不是邮箱名
smtp_auth_password: 'BDBPRMLNZGKWRFJP'
#这是发送邮箱的授权码而不是登录密码
email_configs:
- to: '1980570***@qq.com'
#to后面指定发送到哪个邮箱,我发送到我的qq邮箱,大家需要写自己的邮箱地址,不应该跟smtp_from的邮箱名字重复
#通过kubectl apply 更新文件
[root@master1 ~]# kubectl apply -f alertmanager-cm.yaml
configmap/alertmanager created
在k8s的master1节点生成一个prometheus-alertmanager-cfg.yaml文件,prometheus-alertmanager-cfg.yaml文件在课件,上传到k8s的master1节点,内容如下:
[root@master1 ~]# cat prometheus-alertmanager-cfg.yaml
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus-config
namespace: monitor-sa
data:
prometheus.yml: |
rule_files:
- /etc/prometheus/rules.yml
alerting:
alertmanagers:
- static_configs:
- targets: ["localhost:9093"]
global:
scrape_interval: 15s
scrape_timeout: 10s
evaluation_interval: 1m
scrape_configs:
- job_name: 'kubernetes-node'
kubernetes_sd_configs:
- role: node
relabel_configs:
- source_labels: [__address__]
regex: '(.*):10250'
replacement: '${1}:9100'
target_label: __address__
action: replace
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- job_name: 'kubernetes-node-cadvisor'
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
- job_name: 'kubernetes-apiserver'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
- job_name: kubernetes-pods
kubernetes_sd_configs:
- role: pod
relabel_configs:
- action: keep
regex: true
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_scrape
- action: replace
regex: (.+)
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_path
target_label: __metrics_path__
- action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
source_labels:
- __address__
- __meta_kubernetes_pod_annotation_prometheus_io_port
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- action: replace
source_labels:
- __meta_kubernetes_namespace
target_label: kubernetes_namespace
- action: replace
source_labels:
- __meta_kubernetes_pod_name
target_label: kubernetes_pod_name
- job_name: 'kubernetes-schedule'
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.130:10251']
- job_name: 'kubernetes-controller-manager'
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.130:10252']
- job_name: 'kubernetes-kube-proxy'
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.130:10249','192.168.40.131:10249']
- job_name: 'kubernetes-etcd'
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.130:2379']
rules.yml: |
groups:
- name: example
rules:
- alert: kube-proxy的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: kube-proxy的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: scheduler的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: scheduler的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: controller-manager的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: controller-manager的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: apiserver的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: apiserver的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: etcd的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
- alert: etcd的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
- alert: kube-state-metrics的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
value: "{{ $value }}%"
threshold: "80%"
- alert: kube-state-metrics的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
value: "{{ $value }}%"
threshold: "90%"
- alert: coredns的cpu使用率大于80%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
value: "{{ $value }}%"
threshold: "80%"
- alert: coredns的cpu使用率大于90%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
value: "{{ $value }}%"
threshold: "90%"
- alert: kube-proxy打开句柄数>600
expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kube-proxy打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-schedule打开句柄数>600
expr: process_open_fds{job=~"kubernetes-schedule"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-schedule打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-schedule"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-controller-manager打开句柄数>600
expr: process_open_fds{job=~"kubernetes-controller-manager"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-controller-manager打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-controller-manager"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-apiserver打开句柄数>600
expr: process_open_fds{job=~"kubernetes-apiserver"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-apiserver打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-apiserver"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: kubernetes-etcd打开句柄数>600
expr: process_open_fds{job=~"kubernetes-etcd"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
value: "{{ $value }}"
- alert: kubernetes-etcd打开句柄数>1000
expr: process_open_fds{job=~"kubernetes-etcd"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
value: "{{ $value }}"
- alert: coredns
expr: process_open_fds{k8s_app=~"kube-dns"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"
value: "{{ $value }}"
- alert: coredns
expr: process_open_fds{k8s_app=~"kube-dns"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"
value: "{{ $value }}"
- alert: kube-proxy
expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: scheduler
expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: kubernetes-controller-manager
expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: kubernetes-apiserver
expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: kubernetes-etcd
expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: kube-dns
expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"
value: "{{ $value }}"
- alert: HttpRequestsAvg
expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m])) > 1000
for: 2s
labels:
team: admin
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"
value: "{{ $value }}"
threshold: "1000"
- alert: Pod_restarts
expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
for: 2s
labels:
severity: warnning
annotations:
description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"
value: "{{ $value }}"
threshold: "0"
- alert: Pod_waiting
expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"
value: "{{ $value }}"
threshold: "1"
- alert: Pod_terminated
expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"
value: "{{ $value }}"
threshold: "1"
- alert: Etcd_leader
expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
for: 2s
labels:
team: admin
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_leader_changes
expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
for: 2s
labels:
team: admin
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_failed
expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
for: 2s
labels:
team: admin
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_db_total_size
expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
for: 2s
labels:
team: admin
annotations:
description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"
value: "{{ $value }}"
threshold: "10G"
- alert: Endpoint_ready
expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"
value: "{{ $value }}"
threshold: "1"
- name: 物理节点状态-监控告警
rules:
- alert: 物理节点cpu使用率
expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
for: 2s
labels:
severity: ccritical
annotations:
summary: "{{ $labels.instance }}cpu使用率过高"
description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
- alert: 物理节点内存使用率
expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
for: 2s
labels:
severity: critical
annotations:
summary: "{{ $labels.instance }}内存使用率过高"
description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
- alert: InstanceDown
expr: up == 0
for: 2s
labels:
severity: critical
annotations:
summary: "{{ $labels.instance }}: 服务器宕机"
description: "{{ $labels.instance }}: 服务器延时超过2分钟"
- alert: 物理节点磁盘的IO性能
expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"
description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"
- alert: 入网流量带宽
expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流入网络带宽过高!"
description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
- alert: 出网流量带宽
expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流出网络带宽过高!"
description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
- alert: TCP会话
expr: node_netstat_Tcp_CurrEstab > 1000
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"
description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"
- alert: 磁盘容量
expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"
description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
注意:配置文件解释说明
- job_name: 'kubernetes-schedule'
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.130:10251'] #master1节点的ip:schedule端口
- job_name: 'kubernetes-controller-manager'
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.130:10252'] #master1节点的ip:controller-manager端口
- job_name: 'kubernetes-kube-proxy'
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.130:10249','192.168.40.131:10249']
#master1和node1节点的ip:kube-proxy端口
- job_name: 'kubernetes-etcd'
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
scrape_interval: 5s
static_configs:
- targets: ['192.168.40.130:2379']
#master1节点的ip:etcd端口
#更新资源清单文件
[root@master1 ~]# kubectl delete -f prometheus-cfg.yaml
configmap "prometheus-config" deleted
[root@master1 ~]# kubectl apply -f prometheus-alertmanager-cfg.yaml
configmap/prometheus-config created
安装prometheus和alertmanager
需要把alertmanager.tar.gz镜像包上传的k8s的各个节点,手动解压:
docker load -i alertmanager.tar.gz
在k8s的master1节点生成一个prometheus-alertmanager-deploy.yaml文件,prometheus-alertmanager-deploy.yaml文件在课件里,可自行上传到k8s master1节点上,内容如下:
[root@master1 ~]# cat prometheus-alertmanager-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
component: server
#matchExpressions:
#- {key: app, operator: In, values: [prometheus]}
#- {key: component, operator: In, values: [server]}
template:
metadata:
labels:
app: prometheus
component: server
annotations:
prometheus.io/scrape: 'false'
spec:
nodeName: node1
serviceAccountName: monitor
containers:
- name: prometheus
image: prom/prometheus:v2.2.1
imagePullPolicy: IfNotPresent
command:
- "/bin/prometheus"
args:
- "--config.file=/etc/prometheus/prometheus.yml"
- "--storage.tsdb.path=/prometheus"
- "--storage.tsdb.retention=24h"
- "--web.enable-lifecycle"
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: /etc/prometheus
name: prometheus-config
- mountPath: /prometheus/
name: prometheus-storage-volume
- name: k8s-certs
mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
- name: alertmanager
image: prom/alertmanager:v0.14.0
imagePullPolicy: IfNotPresent
args:
- "--config.file=/etc/alertmanager/alertmanager.yml"
- "--log.level=debug"
ports:
- containerPort: 9093
protocol: TCP
name: alertmanager
volumeMounts:
- name: alertmanager-config
mountPath: /etc/alertmanager
- name: alertmanager-storage
mountPath: /alertmanager
- name: localtime
mountPath: /etc/localtime
volumes:
- name: prometheus-config
configMap:
name: prometheus-config
- name: prometheus-storage-volume
hostPath:
path: /data
type: Directory
- name: k8s-certs
secret:
secretName: etcd-certs
- name: alertmanager-config
configMap:
name: alertmanager
- name: alertmanager-storage
hostPath:
path: /data/alertmanager
type: DirectoryOrCreate
- name: localtime
hostPath:
path: /usr/share/zoneinfo/Asia/Shanghai
注意:
配置文件指定了nodeName: node1,这个位置要写你自己环境的node节点名字
生成一个etcd-certs,这个在部署prometheus需要
[root@master1 ~]# kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
通过kubectl apply更新yaml文件
[root@master1 ~]# kubectl delete -f prometheus-deploy.yaml
[root@master1 ~]# kubectl apply -f prometheus-alertmanager-deploy.yaml
deployment.apps/prometheus-server created
#查看prometheus是否部署成功
kubectl get pods -n monitor-sa | grep prometheus
显示如下,可看到pod状态是running,说明prometheus部署成功
prometheus-server-6c46df5b6-4l9b4 2/2 Running 0 38s
在k8s的master1节点生成一个alertmanager-svc.yaml文件,alertmanager-svc.yaml文件在课件里,可以手动上传到k8s的master1节点,内容如下:
[root@master1 ~]# cat alertmanager-svc.yaml
---
apiVersion: v1
kind: Service
metadata:
labels:
name: prometheus
kubernetes.io/cluster-service: 'true'
name: alertmanager
namespace: monitor-sa
spec:
ports:
- name: alertmanager
nodePort: 30066
port: 9093
protocol: TCP
targetPort: 9093
selector:
app: prometheus
sessionAffinity: None
type: NodePort
#通过kubectl apply 更新yaml文件
[root@master1 ~]# kubectl apply -f alertmanager-svc.yaml
service/alertmanager created
#查看service在物理机上映射的端口
[root@master1 ~]# kubectl get svc -n monitor-sa
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
alertmanager NodePort 10.98.142.161 9093:30066/TCP 56s
prometheus NodePort 10.103.98.225 9090:30009/TCP 56m
注意:上面可以看到prometheus的service暴漏的端口是30009,alertmanager的service暴露的端口是30066
访问prometheus的web界面
点击status->targets,可看到如下
从上面可以发现kubernetes-controller-manager和kubernetes-schedule都显示连接不上对应的端口
可按如下方法处理;
vim /etc/kubernetes/manifests/kube-scheduler.yaml
修改如下内容:
把--bind-address=127.0.0.1变成--bind-address=192.168.40.130
把httpGet:字段下的hosts由127.0.0.1变成192.168.40.130
把—port=0删除
#注意:
192.168.40.130是k8s的控制节点master1节点ip
vim /etc/kubernetes/manifests/kube-controller-manager.yaml
把--bind-address=127.0.0.1变成--bind-address=192.168.40.130
把httpGet:字段下的hosts由127.0.0.1变成192.168.40.130
把—port=0删除
修改之后在k8s各个节点执行
systemctl restart kubelet
kubectl get cs
显示如下:
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-0 Healthy {"health":"true"}
ss -antulp | grep :10251
ss -antulp | grep :10252
可以看到相应的端口已经被物理机监听了
点击status->targets,可看到如下
kubernetes-kube-proxy显示如下:
是因为kube-proxy默认端口10249是监听在127.0.0.1上的,需要改成监听到物理节点上,按如下方法修改,线上建议在安装k8s的时候就做修改,这样风险小一些:
kubectl edit configmap kube-proxy -n kube-system
把metricsBindAddress这段修改成metricsBindAddress: 0.0.0.0:10249
然后重新启动kube-proxy这个pod
kubectl get pods -n kube-system | grep kube-proxy |awk '{print $1}' | xargs kubectl delete pods -n kube-system
ss -antulp |grep :10249
可显示如下
[root@k8s-master ~]# ss -antulp | grep :10249
tcp LISTEN 0 128 [::]:10249
点击Alerts,可看到如下
把kubernetes-etcd展开,可看到如下:
FIRING表示prometheus已经将告警发给alertmanager,在Alertmanager 中可以看到有一个 alert。
登录到alertmanagerweb界面,浏览器输入192.168.40.130:30066,显示如下
这样我在我的qq邮箱,1980570***@qq.com就可以收到报警了,如下
修改prometheus任何一个配置文件之后,可通过kubectl apply使配置生效,执行顺序如下:
kubectldelete -f alertmanager-cm.yaml
kubectlapply -f alertmanager-cm.yaml
kubectldelete -f prometheus-alertmanager-cfg.yaml
kubectlapply -f prometheus-alertmanager-cfg.yaml
kubectldelete -f prometheus-alertmanager-deploy.yaml
kubectl apply -f prometheus-alertmanager-deploy.yaml
END
精彩文章推荐
从0开始轻松玩转k8s,助力企业实现智能化转型+世界500强实战项目汇总
K8s 常见问题
k8s超详细解读
K8s 超详细总结!
K8S 常见面试题总结
使用k3s部署轻量Kubernetes集群快速教程
基于Jenkins和k8s构建企业级DevOps容器云平台
k8s原生的CI/CD工具tekton
K8S二次开发-自定义CRD资源
Docker+k8s+DevOps+Istio+Rancher+CKA+k8s故障排查训练营:
https://edu.51cto.com/topic/4735.html?qd=xglj