Prometheus+Grafana+Alertmanager构建企业级监控系统

Prometheus+Grafana+Alertmanager构建企业级监控系统

环境

HOST-NAME IP K8S Role
master1 192.168.1.180/24 master
node1 192.168.1.181/24 work

1. 安装node-exporter

1.1 node-exporter介绍

node-exporter 可以采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包

括 CPU, 内存,磁盘,网络,文件数等信息。

1.2 安装node-exporter

#查看一下k8s节点
[root@master1 .kube]# kubectl get nodes
NAME      STATUS   ROLES                  AGE   VERSION
master1   Ready    control-plane,master   12d   v1.20.6
node1     Ready    worker                 12d   v1.20.6
#创建一个monitor-sa命名空间
[root@master1 .kube]# kubectl create namespace monitor-sa
namespace/monitor-sa created

#上传node-exporter.tar.gz到master1和node1的家目录
[root@master1 ~]# docker load -i node-exporter.tar.gz 
ad68498f8d86: Loading layer [==================================================>]  4.628MB/4.628MB
ad8512dce2a7: Loading layer [==================================================>]  2.781MB/2.781MB
cc1adb06ef21: Loading layer [==================================================>]   16.9MB/16.9MB
Loaded image: prom/node-exporter:v0.16.0
[root@master1 ~]# 


[root@node1 ~]# docker load -i node-exporter.tar.gz 
ad68498f8d86: Loading layer [==================================================>]  4.628MB/4.628MB
ad8512dce2a7: Loading layer [==================================================>]  2.781MB/2.781MB
cc1adb06ef21: Loading layer [==================================================>]   16.9MB/16.9MB
Loaded image: prom/node-exporter:v0.16.0
[root@node1 ~]# 

#说明 获取node-exporter的方法
在dockerhub的官网搜索
https://hub.docker.com/

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nlOYwB94-1655106671762)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654670966393.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rLX7tj43-1655106671762)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654670983083.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Diput0ie-1655106671763)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654671144462.png)]


[root@master1 prometheus]# cat > /root/prometheus/node-export.yaml <
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: node-exporter
  namespace: monitor-sa
  labels:
    name: node-exporter
spec:
  selector:
    matchLabels:
     name: node-exporter
  template:
    metadata:
      labels:
        name: node-exporter
    spec:
      hostPID: true
      hostIPC: true
      hostNetwork: true
      containers:
      - name: node-exporter
        image: prom/node-exporter:v0.16.0
        ports:
        - containerPort: 9100
        resources:
          requests:
            cpu: 0.15
        securityContext:
          privileged: true
        args:
        - --path.procfs
        - /host/proc
        - --path.sysfs
        - /host/sys
        - --collector.filesystem.ignored-mount-points
        - '"^/(sys|proc|dev|host|etc)($|/)"'
        volumeMounts:
        - name: dev
          mountPath: /host/dev
        - name: proc
          mountPath: /host/proc
        - name: sys
          mountPath: /host/sys
        - name: rootfs
          mountPath: /rootfs
      tolerations:
      - key: "node-role.kubernetes.io/master"
        operator: "Exists"
        effect: "NoSchedule"
      volumes:
        - name: proc
          hostPath:
            path: /proc
        - name: dev
          hostPath:
            path: /dev
        - name: sys
          hostPath:
            path: /sys
        - name: rootfs
          hostPath:
            path: /
END     

[root@master1 prometheus]# kubectl apply -f node-export.yaml 
daemonset.apps/node-exporter created

[root@master1 prometheus]# kubectl get pods -n monitor-sa -o wide
NAME                  READY   STATUS    RESTARTS   AGE   IP              NODE      NOMINATED NODE   READINESS GATES
node-exporter-92k4d   1/1     Running   0          58s   192.168.1.181   node1     <none>           <none>
node-exporter-d44k4   1/1     Running   0          58s   192.168.1.180   master1   <none>           <none>

1.3 通过 node-exporter 采集数据

curl http://主机 ip:9100/metrics  

#node-export 默认的监听端口是 9100,可以看到当前主机获取到的所有监控数据  

curl http://192.168.1.180:9100/metrics | grep node_cpu_seconds  

显示 192.168.1.180 主机 cpu 的使用情况 

**# HELP node_cpu_seconds_total Seconds the cpus spent in each mode.  

**# TYPE node_cpu_seconds_total counter  

node_cpu_seconds_total{cpu="0",mode="idle"} 72963.37  

node_cpu_seconds_total{cpu="0",mode="iowait"} 9.35  

node_cpu_seconds_total{cpu="0",mode="irq"} 0  

node_cpu_seconds_total{cpu="0",mode="nice"} 0  

node_cpu_seconds_total{cpu="0",mode="softirq"} 151.4  

node_cpu_seconds_total{cpu="0",mode="steal"} 0  

node_cpu_seconds_total{cpu="0",mode="system"} 656.12  

node_cpu_seconds_total{cpu="0",mode="user"} 267.1  

#HELP:解释当前指标的含义,上面表示在每种模式下 node 节点的 cpu 花费的时间,以 s 为单位  

#TYPE:说明当前指标的数据类型,上面是 counter 类型  

node_cpu_seconds_total{cpu="0",mode="idle"} :  

cpu0 上 idle 进程占用 CPU 的总时间,CPU 占用时间是一个只增不减的度量指标,从类型中也可以看 

出 node_cpu 的数据类型是 counter(计数器) 

**counter 计数器:只是采集递增的指标  

curl http://192.168.40.180:9100/metrics | grep node_load 
**# HELP node_load1 1m load average.  

**# TYPE node_load1 gauge 
node_load1 0.1  

node_load1 该指标反映了当前主机在最近一分钟以内的负载情况,系统的负载情况会随系统资源的 

使用而变化,因此 node_load1 反映的是当前状态,数据可能增加也可能减少,从注释中可以看出当前指 

标类型为 gauge(标准尺寸)  

gauge 标准尺寸:统计的指标可增加可减少 

2. Prometheus server 安装和配置

2.1 创建 sa 账号,对 sa 做 rbac 授权

#创建一个 sa 账号 monitor
[root@master1 prometheus]# kubectl create serviceaccount monitor -n monitor-sa
serviceaccount/monitor created
[root@master1 prometheus]# kubectl get serviceaccount -n monitor-sa
NAME      SECRETS   AGE
default   1         79m
monitor   1         30s

#把 serviceaccount 账号 monitor 通过 clusterrolebinding 绑定到 clusterrole 上
[root@master1 prometheus]# kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor
clusterrolebinding.rbac.authorization.k8s.io/monitor-clusterrolebinding created


2.2 创建 prometheus 数据存储目录

#在 k8s 集群的 node1 节点上创建数据存储目录
[root@node1 ~]# mkdir /data
[root@node1 ~]# chmod 777 /data/
[root@node1 ~]# ls -ld /data
drwxrwxrwx. 2 root root 6 Jun  8 16:00 /data

2.3 安装prometheus服务

2.3.1 创建一个 configmap 存储卷,用来存放 prometheus 配置信息

[root@master1 prometheus]# cat > /root/prometheus/prometheus-cfg.yaml <
---
kind: ConfigMap
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus-config
  namespace: monitor-sa
data:
  prometheus.yml: |
    global:
      scrape_interval: 15s       #采集目标主机监控数据的时间间隔
      scrape_timeout: 10s        #数据采集超时时间,默认10s
      evaluation_interval: 1m    #触发告警检测的是境,默认是1m
    scrape_configs:              #配置数据源,称为target,每个target用job_name命名。又分为静态配置                                  #和服务发现
    - job_name: 'kubernetes-node'
      kubernetes_sd_configs:       #使用的是k8s的服务发现
      - role: node
      #使用node角色,它使用默认的kubelet提供的http端口来发现集群中的每个node节点
      relabel_configs:     #重新标记
      - source_labels: [__address__]      #配置的原始标签,匹配地址
        regex: '(.*):10250'               #匹配带有10250端口的url
        replacement: '${1}:9100'          #把匹配到的ip:10250的ip保留
        target_label: __address__         #新生成的url是${1}获取的ip:9100
        action: replace
      - action: labelmap
      #匹配到下面正则表达式的标签会被保留,如果不做regex正则的话,默认只是会显示instance标签
        regex: __meta_kubernetes_node_label_(.+)
    - job_name: 'kubernetes-node-cadvisor'
       # 抓取cAdvisor数据,是获取kubelet上/metrics/cadvisor接口数据来获取容器的资源使用情况
      kubernetes_sd_configs:
      - role:  node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap    #把匹配到的标签保留
        regex: __meta_kubernetes_node_label_(.+)
        #保留匹配到的具有__meta_kubernetes_node_label的标签
      - target_label: __address__
      #获取到的地址: __address__="192.168.1.180:10250"
        replacement: kubernetes.default.svc:443
        #把获取到的地址替换成新的地址kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        #把原始标签中__meta_kubernetes_node_name值匹配到
        target_label: __metrics_path__
        #获取__metrics_path__对应的值
        replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
    - job_name: 'kubernetes-apiserver'
      kubernetes_sd_configs:
      - role: endpoints
      #使用k8s中的endpoint服务发现,采集apiserver 6443端口获取到的数据
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
        action: keep
        regex: default;kubernetes;https
    - job_name: 'kubernetes-service-endpoints'
      kubernetes_sd_configs:
      - role: endpoints
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
        action: keep
        regex: true
        #重新打标仅抓取到的具有“prometheus.io/scrape:true"的annotation的端点,意思是说如果某个service具有prometheus.io/scrape = ture annotation声明则抓取,annotation本身也是键值结构,所以这里的源标签设置为键,而regex设置值true,当值匹配到regex设定的内容时则执行keep动作也就是保留,其余则丢弃。
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
        #重新设置 scheme,匹配源标签__meta_kubernetes_service_annotation_prometheus_io_scheme 也就是 prometheus.io/scheme annotation,如果源标签的值匹配到 regex,则把值替换为__scheme__对应的值。
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
        # 应用中自定义暴露的指标,也许你暴露的 API 接口不是/metrics 这个路径,那么你可以在这个POD 对应的 service 中做一个"prometheus.io/path = /mymetrics" 声明,上面的意思就是把你声明的这个路径赋值给__metrics_path__,其实就是让 prometheus 来获取自定义应用暴露的 metrices 的具体路径,不过这里写的要和 service 中做好约定,如果 service 中这样写 prometheus.io/app-metricspath: '/metrics' 那么你这里就要 __meta_kubernetes_service_annotation_prometheus_io_app_metrics_path 这样写。
      - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        # 暴露自定义的应用的端口,就是把地址和你在 service 中定义的 "prometheus.io/port = " 声明做一个拼接,然后赋值给__address__,这样 prometheus 就能获取自定义应用的端口,然后通过这个端口再结合__metrics_path__来获取指标,如果__metrics_path__值不是默认的/metrics 那么就要使用上面的标签替换来获取真正暴露的具体路径。
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        action: replace
        target_label: kubernetes_name 
END      


[root@master1 prometheus]# kubectl apply -f prometheus-cfg.yaml 
configmap/prometheus-config created

[root@master1 prometheus]# kubectl get configmap -n monitor-sa
NAME                DATA   AGE
kube-root-ca.crt    1      3h57m
prometheus-config   1      18s

[root@master1 prometheus]# kubectl describe configmap prometheus-config -n monitor-sa
Name:         prometheus-config
Namespace:    monitor-sa
Labels:       app=prometheus
Annotations:  <none>

Data
====
prometheus.yml:
----
global:
  scrape_interval: 15s
  scrape_timeout: 10s
  evaluation_interval: 1m
scrape_configs:
- job_name: 'kubernetes-node'
  kubernetes_sd_configs:
  - role: node
  relabel_configs:
  - source_labels: [__address__]
    regex: '(.*):10250'
    replacement: '${1}:9100'
    target_label: __address__
    action: replace
  - action: labelmap
    regex: __meta_kubernetes_node_label_(.+)
- job_name: 'kubernetes-node-cadvisor'
  kubernetes_sd_configs:
  - role:  node
  scheme: https
  tls_config:
    ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
  bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
  relabel_configs:
  - action: labelmap
    regex: __meta_kubernetes_node_label_(.+)
  - target_label: __address__
    replacement: kubernetes.default.svc:443
  - source_labels: [__meta_kubernetes_node_name]
    regex: (.+)
    target_label: __metrics_path__
    replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
- job_name: 'kubernetes-apiserver'
  kubernetes_sd_configs:
  - role: endpoints
  scheme: https
  tls_config:
    ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
  bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
  relabel_configs:
  - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
    action: keep
    regex: default;kubernetes;https
- job_name: 'kubernetes-service-endpoints'
  kubernetes_sd_configs:
  - role: endpoints
  relabel_configs:
  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
    action: keep
    regex: true
  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
    action: replace
    target_label: __scheme__
    regex: (https?)
  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
    action: replace
    target_label: __metrics_path__
    regex: (.+)
  - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
    action: replace
    target_label: __address__
    regex: ([^:]+)(?::\d+)?;(\d+)
    replacement: $1:$2
  - action: labelmap
    regex: __meta_kubernetes_service_label_(.+)
  - source_labels: [__meta_kubernetes_namespace]
    action: replace
    target_label: kubernetes_namespace
  - source_labels: [__meta_kubernetes_service_name]
    action: replace
    target_label: kubernetes_name 

Events:  <none>

2.3.2 通过 deployment 部署 prometheus

安装 prometheus 需要的镜像 prometheus-2-2-1.tar.gz ,上传到 k8s 的工作节点 node1 上,手动解压

这个镜像可以从hub.docker.com dockerhub上下载,也可以通过如下指令pull

docker pull prom/prometheus:v2.2.1
[root@node1 ~]# ls prometheus-2-2-1.tar.gz 
prometheus-2-2-1.tar.gz
[root@node1 ~]# du -sh prometheus-2-2-1.tar.gz 
110M    prometheus-2-2-1.tar.gz
[root@node1 ~]# docker load -i prometheus-2-2-1.tar.gz 
6a749002dd6a: Loading layer [==================================================>]  1.338MB/1.338MB
5f70bf18a086: Loading layer [==================================================>]  1.024kB/1.024kB
1692ded805c8: Loading layer [==================================================>]  2.629MB/2.629MB
035489d93827: Loading layer [==================================================>]  66.18MB/66.18MB
8b6ef3a2ab2c: Loading layer [==================================================>]   44.5MB/44.5MB
ff98586f6325: Loading layer [==================================================>]  3.584kB/3.584kB
017a13aba9f4: Loading layer [==================================================>]   12.8kB/12.8kB
4d04d79bb1a5: Loading layer [==================================================>]  27.65kB/27.65kB
75f6c078fa6b: Loading layer [==================================================>]  10.75kB/10.75kB
5e8313e8e2ba: Loading layer [==================================================>]  6.144kB/6.144kB
Loaded image: prom/prometheus:v2.2.1
[root@node1 ~]# 
[root@master1 prometheus]# cat > /root/prometheus/prometheus-deploy.yaml <
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: prometheus-server
  namespace: monitor-sa
  labels:
    app: prometheus
spec:
  replicas: 1
  selector:
    matchLabels:
      app: prometheus
      component: server
    #matchExpressions:
    #- {key: app, operator: In, values: [prometheus]}
    #- {key: component, operator: In, values: [server]}
  template:
    metadata:
      labels:
        app: prometheus
        component: server
      annotations:
        prometheus.io/scrape: 'false'
    spec:
      nodeName: node1
      serviceAccountName: monitor
      containers:
      - name: prometheus
        image: prom/prometheus:v2.2.1
        imagePullPolicy: IfNotPresent
        command:
          - prometheus
          - --config.file=/etc/prometheus/prometheus.yml
          - --storage.tsdb.path=/prometheus
          - --storage.tsdb.retention=720h
          - --web.enable-lifecycle     ##启用prometheus热加载
        ports:
        - containerPort: 9090
          protocol: TCP
        volumeMounts:
        - mountPath: /etc/prometheus/prometheus.yml
          name: prometheus-config
          subPath: prometheus.yml
        - mountPath: /prometheus/
          name: prometheus-storage-volume
      volumes:
        - name: prometheus-config
          configMap:
            name: prometheus-config
            items:
              - key: prometheus.yml
                path: prometheus.yml
                mode: 0644
        - name: prometheus-storage-volume
          hostPath:
           path: /data
           type: Directory
END


[root@master1 prometheus]# kubectl apply -f prometheus-deploy.yaml 
deployment.apps/prometheus-server created

[root@master1 prometheus]# kubectl get pods -n monitor-sa -o wide
NAME                                 READY   STATUS    RESTARTS   AGE     IP               NODE      NOMINATED NODE   READINESS GATES
node-exporter-92k4d                  1/1     Running   0          4h14m   192.168.1.181    node1     <none>           <none>
node-exporter-d44k4                  1/1     Running   0          4h14m   192.168.1.180    master1   <none>           <none>
prometheus-server-657bd8cb4d-zrmk4   1/1     Running   0          42s     10.244.166.185   node1     <none>           <none>
[root@master1 prometheus]# 

[root@master1 prometheus]# cat > /root/prometheus/prometheus-svc.yaml <
apiVersion: v1
kind: Service
metadata:
  name: prometheus
  namespace: monitor-sa
  labels:
    app: prometheus
spec:
  type: NodePort
  ports:
    - port: 9090
      targetPort: 9090
      protocol: TCP
  selector:
    app: prometheus
    component: server
END    

[root@master1 prometheus]# kubectl apply -f prometheus-svc.yaml 
service/prometheus created
[root@master1 prometheus]# kubectl get service -n monitor-sa
NAME         TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
prometheus   NodePort   10.103.238.66   <none>        9090:31935/TCP   37s

[root@master1 prometheus]# kubectl get endpoints -n monitor-sa
NAME         ENDPOINTS             AGE
prometheus   10.244.166.185:9090   3m50s

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TEexacDR-1655106671763)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654689013529.png)]

2.4 Prometheus 热加载

#为了每次修改配置文件可以热加载 prometheus,也就是不停止 prometheus,就可以使配置生效,
#想要使配置生效可用如下热加载命令:
[root@master1 prometheus]# kubectl get pods -n monitor-sa -o wide -l app=prometheus
NAME                                 READY   STATUS    RESTARTS   AGE   IP               NODE    NOMINATED NODE   READINESS GATES
prometheus-server-657bd8cb4d-zrmk4   1/1     Running   0          64m   10.244.166.185   node1   <none>           <none>
[root@master1 prometheus]# 

#10.244.166.185是 prometheus 的 pod 的 ip 地址

想要使配置生效可用如下命令热加载:
[root@master1 prometheus]# curl -X POST http://10.244.166.185:9090/-/reload

#热加载速度比较慢,可以暴力重启 prometheus,如修改上面的 prometheus-cfg.yaml 文件之后,可
执行如下强制删除: 
kubectl delete -f prometheus-cfg.yaml 
kubectl delete -f prometheus-deploy.yaml 
然后再通过 apply 更新: 
kubectl apply -f prometheus-cfg.yaml 
kubectl apply -f prometheus-deploy.yaml 
注意: 
线上最好热加载,暴力删除可能造成监控数据的丢失

3. 可视化 UI 界面 Grafana 的安装和配置

3.1 Grafana 介绍

**Grafana 是一个跨平台的开源的度量分析和可视化工具,可以将采集的数据可视化的展示,并及时通

知给告警接收方。它主要有以下六大特点:

1、展示方式:快速灵活的客户端图表,面板插件有许多不同方式的可视化指标和日志,官方库中具

有丰富的仪表盘插件,比如热图、折线图、图表等多种展示方式;

2、数据源:Graphite,InfluxDB,OpenTSDB,Prometheus,Elasticsearch,CloudWatch 和

KairosDB 等;

3、通知提醒:以可视方式定义最重要指标的警报规则,Grafana 将不断计算并发送通知,在数据达

到阈值时通过 Slack、PagerDuty 等获得通知;

4、混合展示:在同一图表中混合使用不同的数据源,可以基于每个查询指定数据源,甚至自定义数

据源;

5、注释:使用来自不同数据源的丰富事件注释图表,将鼠标悬停在事件上会显示完整的事件元数据

和标记。

3.2 安装 Grafana

**安装 Grafana 需要的镜像 heapster-grafana-amd64_v5_0_4.tar.gz,把镜像上传到 k8s 的工作节点

node1 上,手动解压:


[root@node1 prometheus]# ls
heapster-grafana-amd64_v5_0_4.tar.gz
[root@node1 prometheus]# du -sh heapster-grafana-amd64_v5_0_4.tar.gz 
165M    heapster-grafana-amd64_v5_0_4.tar.gz
[root@node1 prometheus]# docker load -i heapster-grafana-amd64_v5_0_4.tar.gz 
6816d98be637: Loading layer [==================================================>]  4.642MB/4.642MB
523feee8e0d3: Loading layer [==================================================>]  161.5MB/161.5MB
43d2638621da: Loading layer [==================================================>]  230.4kB/230.4kB
f24c0fa82e54: Loading layer [==================================================>]   2.56kB/2.56kB
334547094992: Loading layer [==================================================>]  5.826MB/5.826MB
Loaded image: k8s.gcr.io/heapster-grafana-amd64:v5.0.4

这个镜像可以在hub.docker.com上搜索下载

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uSOaxG4h-1655106671764)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654740970254.png)]

#在控制节点master1上生成如下文件
[root@master1 prometheus]# cat > /root/prometheus/grafana.yaml <
apiVersion: apps/v1
kind: Deployment
metadata:
  name: monitoring-grafana
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      task: monitoring
      k8s-app: grafana
  template:
    metadata:
      labels:
        task: monitoring
        k8s-app: grafana
    spec:
      containers:
      - name: grafana
        image: k8s.gcr.io/heapster-grafana-amd64:v5.0.4
        ports:
        - containerPort: 3000
          protocol: TCP
        volumeMounts:
        - mountPath: /etc/ssl/certs
          name: ca-certificates
          readOnly: true
        - mountPath: /var
          name: grafana-storage
        env:
        - name: INFLUXDB_HOST
          value: monitoring-influxdb
        - name: GF_SERVER_HTTP_PORT
          value: "3000"
          # The following env variables are required to make Grafana accessible via
          # the kubernetes api-server proxy. On production clusters, we recommend
          # removing these env variables, setup auth for grafana, and expose the grafana
          # service using a LoadBalancer or a public IP.
        - name: GF_AUTH_BASIC_ENABLED
          value: "false"
        - name: GF_AUTH_ANONYMOUS_ENABLED
          value: "true"
        - name: GF_AUTH_ANONYMOUS_ORG_ROLE
          value: Admin
        - name: GF_SERVER_ROOT_URL
          # If you're only using the API Server proxy, set this value instead:
          # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
          value: /
      volumes:
      - name: ca-certificates
        hostPath:
          path: /etc/ssl/certs
      - name: grafana-storage
        emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
  labels:
    # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
    # If you are NOT using this as an addon, you should comment out this line.
    kubernetes.io/cluster-service: 'true'
    kubernetes.io/name: monitoring-grafana
  name: monitoring-grafana
  namespace: kube-system
spec:
  # In a production setup, we recommend accessing Grafana through an external Loadbalancer
  # or through a public IP.
  # type: LoadBalancer
  # You could also use NodePort to expose the service at a randomly-generated port
  # type: NodePort
  ports:
  - port: 80
    targetPort: 3000
  selector:
    k8s-app: grafana
  type: NodePort
END



[root@master1 prometheus]# kubectl apply -f grafana.yaml 
deployment.apps/monitoring-grafana created
service/monitoring-grafana created
[root@master1 prometheus]# kubectl get deploy -n kube-system
NAME                      READY   UP-TO-DATE   AVAILABLE   AGE
calico-kube-controllers   1/1     1            1           13d
coredns                   2/2     2            2           13d
monitoring-grafana        1/1     1            1           27s
[root@master1 prometheus]# kubectl get rs -n kube-system
NAME                                 DESIRED   CURRENT   READY   AGE
calico-kube-controllers-6949477b58   1         1         1       13d
coredns-7f89b7bc75                   2         2         2       13d
monitoring-grafana-675798bf47        1         1         1       37s
[root@master1 prometheus]# kubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-6949477b58-phvxx   1/1     Running   0          20h
calico-node-n5j7r                          1/1     Running   0          13d
calico-node-r26rb                          1/1     Running   0          13d
coredns-7f89b7bc75-8h7vd                   1/1     Running   0          11d
coredns-7f89b7bc75-txs9t                   1/1     Running   0          20h
etcd-master1                               1/1     Running   0          13d
fluentd-elasticsearch-6qzdk                1/1     Running   0          3d23h
fluentd-elasticsearch-rxsgw                1/1     Running   0          3d23h
kube-apiserver-master1                     1/1     Running   0          13d
kube-controller-manager-master1            1/1     Running   0          13d
kube-proxy-6jdfc                           1/1     Running   0          13d
kube-proxy-n4gx7                           1/1     Running   0          13d
kube-scheduler-master1                     1/1     Running   0          13d
monitoring-grafana-675798bf47-x8sm8        1/1     Running   0          45s
[root@master1 prometheus]# kubectl get svc -n kube-system
NAME                 TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                  AGE
kube-dns             ClusterIP   10.96.0.10      <none>        53/UDP,53/TCP,9153/TCP   13d
monitoring-grafana   NodePort    10.102.90.185   <none>        80:32738/TCP             55s

使用k8s节点IP加32738可以在浏览器访问了

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lHFLoDso-1655106671764)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654741961142.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-k0qRPFJN-1655106671765)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654742074660.png)]

3.3 Grafana 界面接入 Prometheus 数据源

查看 grafana 前端的 service

[root@master1 prometheus]# kubectl get service -n kube-system|grep grafana
monitoring-grafana   NodePort    10.102.90.185   <none>        80:32738/TCP             15m

1)登陆grafana,在浏览器访问

192.168.1.180:32738

看到如下 内容

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1XzaZdOG-1655106671765)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654742074660.png)]

2)配置 grafana 界面:

开始配置 grafana 的 web 界面:

选择 Create your first data source

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EECDTIBR-1655106671766)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654743048070.png)]

导入的监控模板,可在如下链接搜索

https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes

可直接导入 node_exporter.json 监控模板,这个可以把 node 节点指标显示出来

怎么导入监控模板,按如下步骤:

上面 Save & Test 测试没问题之后,就可以返回 Grafana 主页面,点击左侧的+号下面的Import

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-G6e3C2Si-1655106671766)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654744509244.png)]

出现如下界面

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KmHRCHlT-1655106671766)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654744577982.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rrHKBso9-1655106671766)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654744789936.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XIQzK3ZC-1655106671766)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654744821590.png)]

可直接导入 docker_rev1.json,显示容器资源指标的,

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-S7DYnFKb-1655106671767)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654763653783.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-avADWxxh-1655106671767)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654763795653.png)]

4. 安装kube-state-metrics 组件

**kube-state-metrics 是什么?

kube-state-metrics 通过监听 API Server 生成有关资源对象的状态指标,比如 Deployment、

Node、Pod,需要注意的是 kube-state-metrics 只是简单的提供一个 metrics 数据,并不会存储这

些指标数据,所以我们可以使用 Prometheus 来抓取这些数据然后存储,主要关注的是业务相关的一

些元数据,比如 Deployment、Pod、副本状态等;调度了多少个 replicas?现在可用的有几个?多

少个 Pod 是 running/stopped/terminated 状态?Pod 重启了多少次?我有多少 job 在运行中。

安装 kube-state-metrics 组件

1)创建 sa,并对 sa 授权

[root@master1 prometheus]# cat > /root/prometheus/kube-state-metrics-rbac.yaml <
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: kube-state-metrics
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: kube-state-metrics
rules:
- apiGroups: [""]
  resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
  verbs: ["list", "watch"]
- apiGroups: ["extensions"]
  resources: ["daemonsets", "deployments", "replicasets"]
  verbs: ["list", "watch"]
- apiGroups: ["apps"]
  resources: ["statefulsets"]
  verbs: ["list", "watch"]
- apiGroups: ["batch"]
  resources: ["cronjobs", "jobs"]
  verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
  resources: ["horizontalpodautoscalers"]
  verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: kube-state-metrics
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: kube-state-metrics
subjects:
- kind: ServiceAccount
  name: kube-state-metrics
  namespace: kube-system
END  

[root@master1 prometheus]# kubectl apply -f kube-state-metrics-rbac.yaml 
serviceaccount/kube-state-metrics created
clusterrole.rbac.authorization.k8s.io/kube-state-metrics created
clusterrolebinding.rbac.authorization.k8s.io/kube-state-metrics created

[root@master1 prometheus]# kubectl get serviceaccount -n kube-system|grep kube-state
kube-state-metrics                   1         78s

[root@master1 prometheus]# kubectl get ClusterRole -n kube-system|grep kube-state
kube-state-metrics                                                     2022-06-10T07:03:54Z

[root@master1 prometheus]# kubectl get ClusterRoleBinding -n kube-system|grep kube-state
kube-state-metrics                                     ClusterRole/kube-state-metrics

  1. 安装 kube-state-metrics 组件

安装 kube-state-metrics 组件需要的镜像上传到 k8s 工作节点node1上,手动解压:

这个镜像也可在hub.docker.com上找到

[root@node1 prometheus]# ls kube-state-metrics_1_9_0.tar.gz 
kube-state-metrics_1_9_0.tar.gz
[root@node1 prometheus]# du -sh kube-state-metrics_1_9_0.tar.gz 
33M     kube-state-metrics_1_9_0.tar.gz
[root@node1 prometheus]# 
[root@node1 prometheus]# docker load -i kube-state-metrics_1_9_0.tar.gz 
932da5156413: Loading layer [==================================================>]  3.062MB/3.062MB
bd8df7c22fdb: Loading layer [==================================================>]     31MB/31MB
Loaded image: quay.io/coreos/kube-state-metrics:v1.9.0


在控制节点上生成yaml文件

[root@master1 prometheus]# cat > /root/prometheus/kube-state-metrics-deploy.yaml <
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kube-state-metrics
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kube-state-metrics
  template:
    metadata:
      labels:
        app: kube-state-metrics
    spec:
      serviceAccountName: kube-state-metrics
      containers:
      - name: kube-state-metrics
        image: quay.io/coreos/kube-state-metrics:v1.9.0
        ports:
        - containerPort: 8080
END

[root@master1 prometheus]# kubectl apply -f kube-state-metrics-deploy.yaml 
deployment.apps/kube-state-metrics created

[root@master1 prometheus]# kubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-6949477b58-phvxx   1/1     Running   0          2d1h
calico-node-n5j7r                          1/1     Running   0          14d
calico-node-r26rb                          1/1     Running   0          14d
coredns-7f89b7bc75-8h7vd                   1/1     Running   0          13d
coredns-7f89b7bc75-txs9t                   1/1     Running   0          2d1h
etcd-master1                               1/1     Running   0          14d
fluentd-elasticsearch-6qzdk                1/1     Running   0          5d4h
fluentd-elasticsearch-rxsgw                1/1     Running   0          5d4h
kube-apiserver-master1                     1/1     Running   0          14d
kube-controller-manager-master1            1/1     Running   0          14d
kube-proxy-6jdfc                           1/1     Running   0          14d
kube-proxy-n4gx7                           1/1     Running   0          14d
kube-scheduler-master1                     1/1     Running   0          14d
kube-state-metrics-58d4957bc5-v6tn2        1/1     Running   0          7m38s
monitoring-grafana-675798bf47-x8sm8        1/1     Running   0          29h


  1. 创建service
[root@master1 prometheus]# cat > /root/prometheus/kube-state-metrics-svc.yaml 
apiVersion: v1
kind: Service
metadata:
  annotations:
    prometheus.io/scrape: 'true'
  name: kube-state-metrics
  namespace: kube-system
  labels:
    app: kube-state-metrics
spec:
  ports:
  - name: kube-state-metrics
    port: 8080
    protocol: TCP
  selector:
    app: kube-state-metrics
END    

[root@master1 prometheus]# kubectl apply -f kube-state-metrics-svc.yaml
service/kube-state-metrics created

[root@master1 prometheus]# kubectl get svc -n kube-system
NAME                 TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)                  AGE
kube-dns             ClusterIP   10.96.0.10       <none>        53/UDP,53/TCP,9153/TCP   15d
kube-state-metrics   ClusterIP   10.102.207.144   <none>        8080/TCP                 46s
monitoring-grafana   NodePort    10.102.90.185    <none>        80:32738/TCP             29h
[root@master1 prometheus]# kubectl get endpoints -n kube-system
NAME                 ENDPOINTS                                                        AGE
kube-dns             10.244.137.66:53,10.244.137.69:53,10.244.137.66:53 + 3 more...   15d
kube-state-metrics   10.244.166.187:8080                                              71s
monitoring-grafana   10.244.166.186:3000                                              29h

在 grafana web 界面导入 Kubernetes Cluster (Prometheus)-1577674936972.json 和 Kubernetes

cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json

文件在grafana.com上找到

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-O5bLmZRn-1655106671767)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654847818392.png)]

导入json

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vXHqZNCu-1655106671767)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654847948954.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gfgBRQkQ-1655106671768)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654848699926.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fXenx5m2-1655106671768)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654848670153.png)]

5. 配置 alertmanager-发送报警到 qq 邮箱

报警:指 prometheus 将监测到的异常事件发送给 alertmanager

通知:alertmanager 将报警信息发送到邮件、微信、钉钉等

创建 alertmanager 配置文件

在 k8s 的控制节点master1创建 alertmanager-cm.yaml 文件

[root@master1 prometheus]# ls alertmanager-cm.yaml 
alertmanager-cm.yaml
[root@master1 prometheus]# du -sh alertmanager-cm.yaml 
4.0K    alertmanager-cm.yaml
[root@master1 prometheus]# cat alertmanager-cm.yaml 
kind: ConfigMap
apiVersion: v1
metadata:
  name: alertmanager
  namespace: monitor-sa
data:
  alertmanager.yml: |-
    global:
      resolve_timeout: 1m
      smtp_smarthost: 'smtp.163.com:25'
      smtp_from: '[email protected]'
      smtp_auth_username: 'xxxxxxxx'
      smtp_auth_password: 'xxxxxxxxxx'
      smtp_require_tls: false
    route:                       #用于配置告警分发策略
      group_by: [alertname]      #采用哪个标签来作为分组依据
      group_wait: 10s      #组告警等待时间。也就是告警产生后等待 10s,如果有同组告警一起发出
      group_interval: 10s  #上下两组发送告警的间隔时间
      repeat_interval: 10m #重复发送告警的时间,减少相同邮件的发送频率,默认是 1h
      receiver: default-receiver  ##定义谁来接收告警
    receivers:
    - name: 'default-receiver'
      email_configs:
      - to: '[email protected]'
        send_resolved: true
[root@master1 prometheus]# 

[root@master1 prometheus]# kubectl apply -f alertmanager-cm.yaml 
configmap/alertmanager created
[root@master1 prometheus]# kubectl get cm -n monitor-sa
NAME                DATA   AGE
alertmanager        1      23s


alertmanager 配置文件解释说明:
smtp_smarthost: 'smtp.163.com:25'
#163 邮箱的 SMTP 服务器地址+端口
smtp_from: '[email protected]'
#这是指定从哪个邮箱发送报警
smtp_auth_username: 'xxxxxxxx' #这是发送邮箱的认证用户,不是邮箱名
smtp_auth_password: 'xxxxxxxxxx' #这是发送邮箱的授权码而不是登录密码,你们需要用自己的,不要用我的,用我的你会发不出来报警
email_configs:
 - to: '[email protected]'
#to 后面指定发送到哪个邮箱,我发送到我的 qq 邮箱,大家需要写自己的邮箱地址,不应该跟
smtp_from 的邮箱名字重复
 route: #用于设置告警的分发策略
 group_by: [alertname]
 #alertmanager 会根据 group_by 配置将 Alert 分组
 group_wait: 10s 
# 分组等待时间。也就是告警产生后等待 10s,如果有同组告警一起发出
 group_interval: 10s # 上下两组发送告警的间隔时间
 repeat_interval: 10m # 重复发送告警的时间,减少相同邮件的发送频率,默认是 1h
 receiver: default-receiver #定义谁来收告警

Prometheus 一条告警的触发流程、等待时间

报警处理流程如下:

  1. Prometheus Server 监控目标主机上暴露的 http 接口(这里假设接口 A),通过 Promethes 配置的

'scrape_interval’定义的时间间隔,定期采集目标主机上监控数据。

  1. 当接口 A 不可用的时候,Server 端会持续的尝试从接口中取数据,直到"scrape_timeout"时间后

停止尝试。这时候把接口的状态变为“DOWN”。

\3. Prometheus 同时根据配置的"evaluation_interval"的时间间隔,定期(默认 1min)的对 Alert

Rule 进行评估;当到达评估周期的时候,发现接口 A 为 DOWN,即 UP=0 为真,激活 Alert,进入

“PENDING”状态,并记录当前 active 的时间;

  1. 当下一个 alert rule 的评估周期到来的时候,发现 UP=0 继续为真,然后判断警报 Active 的时间

是否已经超出 rule 里的‘for’ 持续时间,如果未超出,则进入下一个评估周期;如果时间超出,

则 alert 的状态变为“FIRING”;同时调用 Alertmanager 接口,发送相关报警数据。

  1. AlertManager 收到报警数据后,会将警报信息进行分组,然后根据 alertmanager 配置的

“group_wait”时间先进行等待。等 wait 时间过后再发送报警信息。

  1. 属于同一个 Alert Group 的警报,在等待的过程中可能进入新的 alert,如果之前的报警已经成

功发出,那么间隔“group_interval”的时间间隔后再重新发送报警信息。比如配置的是邮件报警,

那么同属一个 group 的报警信息会汇总在一个邮件里进行发送。

  1. 如果 Alert Group 里的警报一直没发生变化并且已经成功发送,等待‘repeat_interval’时间间

隔之后再重复发送相同的报警邮件;如果之前的警报没有成功发送,则相当于触发第 6 条条件,则需

要等待 group_interval 时间间隔后重复发送。

同时最后至于警报信息具体发给谁,满足什么样的条件下指定警报接收人,设置不同报警发送频率,

这里有 alertmanager 的 route 路由规则进行配置。

#创建 prometheus 和告警规则配置文件

在 k8s 的控制节点生成一个 prometheus-alertmanager-cfg.yaml 文件并上传到 k8s 的 master1 节点

[root@master1 prometheus]# cat > /root/prometheus/prometheus-alertmanager-cfg.yaml <
kind: ConfigMap
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus-config
  namespace: monitor-sa
data:
  prometheus.yml: |
    rule_files:
    - /etc/prometheus/rules.yml
    alerting:
      alertmanagers:
      - static_configs:
        - targets: ["localhost:9093"]
    global:
      scrape_interval: 15s
      scrape_timeout: 10s
      evaluation_interval: 1m
    scrape_configs:
    - job_name: 'kubernetes-node'
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - source_labels: [__address__]
        regex: '(.*):10250'
        replacement: '${1}:9100'
        target_label: __address__
        action: replace
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
    - job_name: 'kubernetes-node-cadvisor'
      kubernetes_sd_configs:
      - role:  node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
    - job_name: 'kubernetes-apiserver'
      kubernetes_sd_configs:
      - role: endpoints
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
        action: keep
        regex: default;kubernetes;https
    - job_name: 'kubernetes-service-endpoints'
      kubernetes_sd_configs:
      - role: endpoints
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        action: replace
        target_label: kubernetes_name 
    - job_name: 'kubernetes-pods'
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - action: keep
        regex: true
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_scrape
      - action: replace
        regex: (.+)
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_path
        target_label: __metrics_path__
      - action: replace
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        source_labels:
        - __address__
        - __meta_kubernetes_pod_annotation_prometheus_io_port
        target_label: __address__
      - action: labelmap
        regex: __meta_kubernetes_pod_label_(.+)
      - action: replace
        source_labels:
        - __meta_kubernetes_namespace
        target_label: kubernetes_namespace
      - action: replace
        source_labels:
        - __meta_kubernetes_pod_name
        target_label: kubernetes_pod_name
    - job_name: 'kubernetes-schedule'
      scrape_interval: 5s
      static_configs:
      - targets: ['192.168.1.180:10251']
    - job_name: 'kubernetes-controller-manager'
      scrape_interval: 5s
      static_configs:
      - targets: ['192.168.1.180:10252']
    - job_name: 'kubernetes-kube-proxy'
      scrape_interval: 5s
      static_configs:
      - targets: ['192.168.1.180:10249','192.168.1.181:10249']
    - job_name: 'kubernetes-etcd'
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
        cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
        key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
      scrape_interval: 5s
      static_configs:
      - targets: ['192.168.1.180:2379']
  rules.yml: |
    groups:
    - name: example
      rules:
      - alert: kube-proxy的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  kube-proxy的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: scheduler的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  scheduler的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: controller-manager的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  controller-manager的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: apiserver的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  apiserver的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: etcd的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  etcd的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: kube-state-metrics的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
          value: "{{ $value }}%"
          threshold: "80%"      
      - alert: kube-state-metrics的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
          value: "{{ $value }}%"
          threshold: "90%"      
      - alert: coredns的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
          value: "{{ $value }}%"
          threshold: "80%"      
      - alert: coredns的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
          value: "{{ $value }}%"
          threshold: "90%"      
      - alert: kube-proxy打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kube-proxy打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-schedule打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-schedule"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-schedule打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-etcd打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-etcd"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-etcd打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: coredns
        expr: process_open_fds{k8s_app=~"kube-dns"}  > 600
        for: 2s
        labels:
          severity: warnning 
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"
          value: "{{ $value }}"
      - alert: coredns
        expr: process_open_fds{k8s_app=~"kube-dns"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"
          value: "{{ $value }}"
      - alert: kube-proxy
        expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: scheduler
        expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager
        expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver
        expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-etcd
        expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kube-dns
        expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: HttpRequestsAvg
        expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"
          value: "{{ $value }}"
          threshold: "1000"   
      - alert: Pod_restarts
        expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Pod_waiting
        expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"
          value: "{{ $value }}"
          threshold: "1"   
      - alert: Pod_terminated
        expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"
          value: "{{ $value }}"
          threshold: "1"
      - alert: Etcd_leader
        expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_leader_changes
        expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_failed
        expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_db_total_size
        expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"
          value: "{{ $value }}"
          threshold: "10G"
      - alert: Endpoint_ready
        expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"
          value: "{{ $value }}"
          threshold: "1"
    - name: 物理节点状态-监控告警
      rules:
      - alert: 物理节点cpu使用率
        expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
        for: 2s
        labels:
          severity: ccritical
        annotations:
          summary: "{{ $labels.instance }}cpu使用率过高"
          description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" 
      - alert: 物理节点内存使用率
        expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{ $labels.instance }}内存使用率过高"
          description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
      - alert: InstanceDown
        expr: up == 0
        for: 2s
        labels:
          severity: critical
        annotations:   
          summary: "{{ $labels.instance }}: 服务器宕机"
          description: "{{ $labels.instance }}: 服务器延时超过2分钟"
      - alert: 物理节点磁盘的IO性能
        expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"
          description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"
      - alert: 入网流量带宽
        expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流入网络带宽过高!"
          description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
      - alert: 出网流量带宽
        expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流出网络带宽过高!"
          description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
      - alert: TCP会话
        expr: node_netstat_Tcp_CurrEstab > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"
          description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"
      - alert: 磁盘容量
        expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"
          description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
END         



[root@master1 prometheus]# kubectl delete -f prometheus-cfg.yaml 
configmap "prometheus-config" deleted
[root@master1 prometheus]# kubectl apply -f prometheus-alertmanager-cfg.yaml 
configmap/prometheus-config created
[root@master1 prometheus]# kubectl get cm -n monitor-sa
NAME                DATA   AGE
alertmanager        1      75m
kube-root-ca.crt    1      2d20h
prometheus-config   2      5s


安装 prometheus 和 alertmanager

需要把 alertmanager.tar.gz 镜像包上传的 k8s 的各个工作节点,这个环境仅有node1,手动解压:

[root@node1 prometheus]# ls alertmanager.tar.gz 
alertmanager.tar.gz
[root@node1 prometheus]# du -sh alertmanager.tar.gz 
32M     alertmanager.tar.gz
[root@node1 prometheus]# docker load -i alertmanager.tar.gz 
4febd3792a1f: Loading layer [==================================================>]   1.36MB/1.36MB
68d1a8b41cc0: Loading layer [==================================================>]  2.586MB/2.586MB
5f70bf18a086: Loading layer [==================================================>]  1.024kB/1.024kB
30d4e7b232e4: Loading layer [==================================================>]  12.77MB/12.77MB
6b961451fcb0: Loading layer [==================================================>]  16.59MB/16.59MB
b5abc4736d3f: Loading layer [==================================================>]  6.144kB/6.144kB
Loaded image: prom/alertmanager:v0.14.0

在 k8s 的控制节点master1生成一个 prometheus-alertmanager-deploy.yaml

[root@master1 prometheus]# cat > /root/prometheus/prometheus-alertmanager-deploy.yaml <
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: prometheus-server
  namespace: monitor-sa
  labels:
    app: prometheus
spec:
  replicas: 1
  selector:
    matchLabels:
      app: prometheus
      component: server
    #matchExpressions:
    #- {key: app, operator: In, values: [prometheus]}
    #- {key: component, operator: In, values: [server]}
  template:
    metadata:
      labels:
        app: prometheus
        component: server
      annotations:
        prometheus.io/scrape: 'false'
    spec:
      nodeName: node1
      serviceAccountName: monitor
      containers:
      - name: prometheus
        image: prom/prometheus:v2.2.1
        imagePullPolicy: IfNotPresent
        command:
        - "/bin/prometheus"
        args:
        - "--config.file=/etc/prometheus/prometheus.yml"
        - "--storage.tsdb.path=/prometheus"
        - "--storage.tsdb.retention=24h"
        - "--web.enable-lifecycle"
        ports:
        - containerPort: 9090
          protocol: TCP
        volumeMounts:
        - mountPath: /etc/prometheus
          name: prometheus-config
        - mountPath: /prometheus/
          name: prometheus-storage-volume
        - name: k8s-certs
          mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
        - name: localtime
          mountPath: /etc/localtime
      - name: alertmanager
        image: prom/alertmanager:v0.14.0
        imagePullPolicy: IfNotPresent
        args:
        - "--config.file=/etc/alertmanager/alertmanager.yml"
        - "--log.level=debug"
        ports:
        - containerPort: 9093
          protocol: TCP
          name: alertmanager
        volumeMounts:
        - name: alertmanager-config
          mountPath: /etc/alertmanager
        - name: alertmanager-storage
          mountPath: /alertmanager
        - name: localtime
          mountPath: /etc/localtime
      volumes:
        - name: prometheus-config
          configMap:
            name: prometheus-config
        - name: prometheus-storage-volume
          hostPath:
           path: /data
           type: Directory
        - name: k8s-certs
          secret:
           secretName: etcd-certs
        - name: alertmanager-config
          configMap:
            name: alertmanager
        - name: alertmanager-storage
          hostPath:
           path: /data/alertmanager
           type: DirectoryOrCreate
        - name: localtime
          hostPath:
           path: /usr/share/zoneinfo/Asia/Shanghai
END

#生成一个 etcd-certs,这个在部署 prometheus 需要

[root@master1 prometheus]# kubectl create secret generic etcd-certs -n monitor-sa --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
secret/etcd-certs created
You have new mail in /var/spool/mail/root
[root@master1 prometheus]# kubectl get secret -n monitor-sa
NAME                  TYPE                                  DATA   AGE
default-token-78mw6   kubernetes.io/service-account-token   3      2d20h
etcd-certs            Opaque                                3      24s
monitor-token-gbxmj   kubernetes.io/service-account-token   3      2d19h

[root@master1 prometheus]# kubectl describe secret etcd-certs -n monitor-sa
Name:         etcd-certs
Namespace:    monitor-sa
Labels:       <none>
Annotations:  <none>

Type:  Opaque

Data
====
server.key:  1679 bytes
ca.crt:      1058 bytes
server.crt:  1176 bytes

通过 kubectl apply 更新资源清单 yaml 文件

[root@master1 prometheus]# kubectl get pods -n monitor-sa
NAME                                 READY   STATUS    RESTARTS   AGE
node-exporter-92k4d                  1/1     Running   0          2d20h
node-exporter-d44k4                  1/1     Running   0          2d20h
prometheus-server-657bd8cb4d-zrmk4   1/1     Running   0          2d15h
[root@master1 prometheus]# kubectl delete -f prometheus-deploy.yaml 
deployment.apps "prometheus-server" deleted
[root@master1 prometheus]# kubectl get pods -n monitor-sa
NAME                  READY   STATUS    RESTARTS   AGE
node-exporter-92k4d   1/1     Running   0          2d20h
node-exporter-d44k4   1/1     Running   0          2d20h


[root@master1 prometheus]# kubectl apply -f prometheus-alertmanager-deploy.yaml 
deployment.apps/prometheus-server created
[root@master1 prometheus]# kubectl get deploy -n monitor-sa
NAME                READY   UP-TO-DATE   AVAILABLE   AGE
prometheus-server   1/1     1            1           6s
[root@master1 prometheus]# kubectl get rs -n monitor-sa
NAME                           DESIRED   CURRENT   READY   AGE
prometheus-server-55cd9cb6d7   1         1         1       24s
[root@master1 prometheus]# kubectl get pods -n monitor-sa -o wide
NAME                                 READY   STATUS    RESTARTS   AGE     IP               NODE      NOMINATED NODE   READINESS GATES
node-exporter-92k4d                  1/1     Running   0          2d20h   192.168.1.181    node1     <none>           <none>
node-exporter-d44k4                  1/1     Running   0          2d20h   192.168.1.180    master1   <none>           <none>
prometheus-server-55cd9cb6d7-v7rwh   2/2     Running   0          32s     10.244.166.188   node1     <none>           <none>

部署 alertmanager 的 service,方便在浏览器访问

在 k8s 的控制节点生成一个 alertmanager-svc.yaml 文件

[root@master1 prometheus]# cat > /root/prometheus/alertmanager-svc.yaml <
---
apiVersion: v1
kind: Service
metadata:
  labels:
    name: prometheus
    kubernetes.io/cluster-service: 'true'
  name: alertmanager
  namespace: monitor-sa
spec:
  ports:
  - name: alertmanager
    nodePort: 30066
    port: 9093
    protocol: TCP
    targetPort: 9093
  selector:
    app: prometheus
  sessionAffinity: None
  type: NodePort
END

[root@master1 prometheus]# ls alertmanager-svc.yaml 
alertmanager-svc.yaml
[root@master1 prometheus]# du -sh alertmanager-svc.yaml
4.0K    alertmanager-svc.yaml

[root@master1 prometheus]# kubectl apply -f alertmanager-svc.yaml 
service/alertmanager created
You have new mail in /var/spool/mail/root
[root@master1 prometheus]# kubectl get svc -n monitor-sa
NAME           TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
alertmanager   NodePort   10.110.81.137   <none>        9093:30066/TCP   16s
prometheus     NodePort   10.103.238.66   <none>        9090:31935/TCP   2d16h

使用master1的IP访问alertmanager UI

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ce9rcwB7-1655106671768)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654919654087.png)]

访问 prometheus 的 web 界面

点击 status->targets,可看到如下

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gQLG0yM1-1655106671769)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654919879645.png)]

从上面可以发现 kubernetes-controller-manager 和 kubernetes-schedule 都显示连接不上对应的端

可按如下方法处理:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4wyg8uGS-1655106671769)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654935268318.png)]

因为kube-proxy是受控制器管理的,所以删除后会自动重建
kubectl get pods -n kube-system|grep kube-proxy|awk '{print $1}'|xargs kubectl delete pods -n kube-system

可以看到相应的端口已经被物理机监听了

检查邮箱发现已收到邮件报警

扩展:暴力更新配置文件

修改 prometheus 任何一个配置文件之后,可通过 kubectl apply 使配置生效,执行顺序如下:

kubectl delete -f alertmanager-cm.yaml

kubectl apply -f alertmanager-cm.yaml

kubectl delete -f prometheus-alertmanager-cfg.yaml

kubectl apply -f prometheus-alertmanager-cfg.yaml

kubectl delete -f prometheus-alertmanager-deploy.yaml

kubectl apply -f prometheus-alertmanager-deploy.yaml

6. 配置 alertmanager-发送报警到钉钉

打开电脑版钉钉创建机器人

1.创建钉钉机器人

打开电脑版钉钉,创建一个群,创建自定义机器人,按如下步骤创建

https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq

https://developers.dingtalk.com/document/app/custom-robot-access

我创建的机器人如下:

群设置–>智能群助手–>添加机器人–>自定义–>添加

机器人名称:test

接收群组:钉钉报警测试

安全设置:

自定义关键词:cluster1

上面配置好之后点击完成即可,这样就会创建一个 test 的报警机器人,创建机器人成功之后怎么查

看 webhook,按如下:

点击智能群助手,可以看到刚才创建的 test 这个机器人,点击 test,就会进入到 test 机器人的设

置界面

出现如下内容:

机器人名称:test

接受群组:钉钉报警测试

消息推送:开启

webhook:

这个每个人得到的不一样,复制备用

安全设置:

自定义关键词:cluster1

安装钉钉的 webhook 插件,在 k8s 的控制节点 master1 操作

prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz 压缩包所在的百度网盘地址如下:

链接:https://pan.baidu.com/s/1bxkiE83Nv5dEvLB1ZldEcw
提取码:ndm4

tar zxvf prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz

cd prometheus-webhook-dingtalk-0.3.0.linux-amd64

启动钉钉报警插件

nohup ./prometheus-webhook-dingtalk --web.listen-address=“0.0.0.0:8060” –

ding.profile=“cluster1=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx” &

这里的xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx是前面复制的webhook

对原来的 alertmanager-cm.yaml 文件做备份

cp alertmanager-cm.yaml alertmanager-cm.yaml.bak

重新生成一个新的 alertmanager-cm.yaml 文件

[root@master1 prometheus]# cat > /root/prometheus/alertmanager-cm.yaml <
kind: ConfigMap
apiVersion: v1
metadata:
  name: alertmanager
  namespace: monitor-sa
data:
  alertmanager.yml: |-
    global:
      resolve_timeout: 1m
      smtp_smarthost: 'smtp.qq.com:465'
      smtp_from: '[email protected]'
      smtp_auth_username: 'xxxxx'
      smtp_auth_password: 'xxxxxxxxx'
      smtp_require_tls: false
    route:
      group_by: [alertname]
      group_wait: 10s
      group_interval: 10s
      repeat_interval: 10m
      receiver: cluster1
    receivers:
    - name: 'cluster1'
      webhook_configs:
      - url: 'http://192.168.1.180:8060/dingtalk/cluster1/send'
        send_resolved: true
END

[root@master1 prometheus]# kubectl delete -f alertmanager-cm.yaml
configmap "alertmanager" deleted
[root@master1 prometheus]# kubectl apply -f alertmanager-cm.yaml
configmap/alertmanager created

[root@master1 prometheus]# kubectl delete -f prometheus-alertmanager-cfg.yaml 
configmap "prometheus-config" deleted
[root@master1 prometheus]# kubectl apply -f prometheus-alertmanager-cfg.yaml 
configmap/prometheus-config created

[root@master1 prometheus]# kubectl delete -f prometheus-alertmanager-deploy.yaml 
deployment.apps "prometheus-server" deleted 
[root@master1 prometheus]# kubectl apply -f prometheus-alertmanager-deploy.yaml 
deployment.apps/prometheus-server created

7. 配置 alertmanager-发送报警到微信

注册企业微信

登陆网址:

https://work.weixin.qq.com/

找到应用管理,创建应用

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HzPI9RnJ-1655106671769)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654950024388.png)]

应用名字 wechat

创建成功之后显示如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zDYQJTEe-1655106671770)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654950450717.png)]

[root@master1 prometheus]# cat > /root/prometheus/alertmanager-cm.yaml <
kind: ConfigMap
apiVersion: v1
metadata:
  name: alertmanager
  namespace: monitor-sa
data:
  alertmanager.yml: |-
    global:
      resolve_timeout: 1m
      smtp_smarthost: 'smtp.qq.com:465'
      smtp_from: '[email protected]'
      smtp_auth_username: 'xxxxx'
      smtp_auth_password: 'xxxxxxx'
      smtp_require_tls: false
    route:
      group_by: [alertname]
      group_wait: 10s
      group_interval: 10s
      repeat_interval: 10m
      receiver: prometheus
    receivers:
    - name: 'prometheus'
      wechat_configs:
      - corp_id: ww7xxxxxx     #换成你自已的
        to_user: '@all'
        agent_id: 1000003
        api_secret: xxxxxxxxxxxxxxxxxxxx    #换成你自已的
END

[root@master1 prometheus]# kubectl delete -f alertmanager-cm.yaml
configmap "alertmanager" deleted
[root@master1 prometheus]# kubectl apply -f alertmanager-cm.yaml
configmap/alertmanager created

[root@master1 prometheus]# kubectl delete -f prometheus-alertmanager-deploy.yaml 
[root@master1 prometheus]# kubectl apply -f prometheus-alertmanager-deploy.yaml 
deployment.apps/prometheus-server created

[root@master1 prometheus]# kubectl get pods -n monitor-sa
NAME                                 READY   STATUS    RESTARTS   AGE
node-exporter-92k4d                  1/1     Running   0          3d5h
node-exporter-d44k4                  1/1     Running   2          3d5h
prometheus-server-55cd9cb6d7-6pj7z   2/2     Running   0          28s

发送成功

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-i2F6TD6f-1655106671770)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1654952016431.png)]

8. Prometheus 监控扩展

8.1 promethues 采集 tomcat 监控数据

tomcat_exporter地址

链接:https://pan.baidu.com/s/1E2nDbVX3VcRxTxxowVaNtQ
提取码:nrml

下面在k8s-node节点操作

(1)制作tomcat镜像,按如下步骤

mkdir /root/tomcat_image

把上面的war包和jar包传到这个目录下

cd /root/tomcat_image

cat > Dockerfile <<END
FROM tomcat
ADD metrics.war /usr/local/tomcat/webapps/
ADD simpleclient-0.8.0.jar  /usr/local/tomcat/lib/
ADD simpleclient_common-0.8.0.jar /usr/local/tomcat/lib/
ADD simpleclient_hotspot-0.8.0.jar /usr/local/tomcat/lib/
ADD simpleclient_servlet-0.8.0.jar /usr/local/tomcat/lib/
ADD tomcat_exporter_client-0.0.12.jar /usr/local/tomcat/lib/
END

[root@node1 tomcat_image]# docker build -t='mack/tomcat_prometheus:v1' .
[root@node1 tomcat_image]# docker images
REPOSITORY                                                        TAG            IMAGE ID       CREATED         SIZE
mack/tomcat_prometheus                                            v1             d60e7a86371f   7 minutes ago   680MB

基于上面的镜像创建一个tomcat实例

下面操作在master1节点进行

cat > /root/tomcat_deploy.yaml <
创建一个service,可操作也可不操作
 cat > /root/tomcat-service.yaml <<END
kind: Service  #service 类型
apiVersion: v1
metadata:
#  annotations:
#    prometheus.io/scrape: 'true'
  name: tomcat-service
spec:
  selector:
    app: tomcat
  ports:
  - nodePort: 31360
    port: 80
    protocol: TCP
    targetPort: 8080
  type: NodePort
END

kubectl apply -f tomcat-service.yaml

在promethues上可以看到监控到tomcat的pod了

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hzumjvyw-1655106671770)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1655024399571.png)]

8.2 Prometheus 监控 mysql

#master1
[root@master1 ~]# yum install mysql -y
[root@master1 ~]# yum install mariadb* -y
[root@master1 ~]# systemctl start mariadb

[root@master1 ~]# ls mysqld_exporter-0.10.0.linux-amd64.tar.gz 
mysqld_exporter-0.10.0.linux-amd64.tar.gz
[root@master1 ~]# du -sh mysqld_exporter-0.10.0.linux-amd64.tar.gz
3.3M    mysqld_exporter-0.10.0.linux-amd64.tar.gz
[root@master1 ~]# tar -zxvf mysqld_exporter-0.10.0.linux-amd64.tar.gz
mysqld_exporter-0.10.0.linux-amd64/
mysqld_exporter-0.10.0.linux-amd64/LICENSE
mysqld_exporter-0.10.0.linux-amd64/NOTICE
mysqld_exporter-0.10.0.linux-amd64/mysqld_exporter
[root@master1 ~]# 

cd mysqld_exporter-0.10.0.linux-amd64
cp -ar mysqld_exporter /usr/local/bin/

[root@master1 mysqld_exporter-0.10.0.linux-amd64]# cd /usr/local/bin/
[root@master1 bin]# ll
total 10176
-rwxr-xr-x 1 1000 1000 10419174 Apr 25  2017 mysqld_exporter

登陆 mysql 为 mysql_exporter 创建账号并授权

创建数据库用户。

mysql

CREATE USER ‘mysql_exporter’@‘localhost’ IDENTIFIED BY ‘Abcdef123!.’;

对 mysql_exporter 用户授权

mysql

GRANT PROCESS, REPLICATION CLIENT, SELECT ON . TO ‘mysql_exporter’@‘localhost’;

exit 退出 mysql

创建 mysql 配置文件、运行时可免密码连接数据库:

cd mysqld_exporter-0.10.0.linux-amd64
cat > my.cnf <<END

[client] 

user=mysql_exporter 

password=Abcdef123!.
END

启动 mysql_exporter 客户端

nohup ./mysqld_exporter --config.my-cnf=./my.cnf &

mysqld_exporter 的监听端口是 9104

修改 prometheus-alertmanager-cfg.yaml 文件,添加如下

- job_name: 'mysql'
  static_configs:
  - targets: ['192.168.40.180:9104']

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1MXnUv62-1655106671770)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1655026431623.png)]

[root@master1 prometheus]# kubectl delete -f prometheus-alertmanager-cfg.yaml 
configmap "prometheus-config" deleted
[root@master1 prometheus]# kubectl apply -f prometheus-alertmanager-cfg.yaml
configmap/prometheus-config created
[root@master1 prometheus]# kubectl delete -f prometheus-alertmanager-deploy.yaml 
deployment.apps "prometheus-server" deleted
[root@master1 prometheus]# kubectl apply -f prometheus-alertmanager-deploy.yaml
deployment.apps/prometheus-server created

grafana 导入 mysql 监控图表

mysql-overview_rev5.json

8.3 Prometheus 监控 Nginx

所需要的文件下载地址

链接:https://pan.baidu.com/s/1SD1TPFNjBnf9wLIfiQVqHg
提取码:uf3f

#1,在master1上下载nginx-module-vts模块
[root@master1 prometheus]# ls nginx-module-vts-master.zip 
nginx-module-vts-master.zip
[root@master1 prometheus]# du -sh nginx-module-vts-master.zip 
400K    nginx-module-vts-master.zip
[root@master1 prometheus]# unzip nginx-module-vts-master.zip 
[root@master1 prometheus]# mv nginx-module-vts-master /usr/local/

#2,安装nginx
[root@master1 prometheus]# ls nginx-1.15.7.tar.gz 
nginx-1.15.7.tar.gz
[root@master1 prometheus]# du -sh nginx-1.15.7.tar.gz
1004K   nginx-1.15.7.tar.gz

[root@master1 nginx-1.15.7]# cd nginx-1.15.7/
[root@master1 nginx-1.15.7]# ./configure  --prefix=/usr/local/nginx --with-http_gzip_static_module --with-http_stub_status_module --with-http_ssl_module --with-pcre --with-file-aio --with-http_realip_module --add-module=/usr/local/nginx-module-vts-master

[root@master1 nginx-1.15.7]# make && make install
修改nginx配置文件:
vim /usr/local/nginx/conf/nginx.conf
#server下添加如下:
        location /status {
           vhost_traffic_status_display;
           vhost_traffic_status_display_format html;
           }
# http中添加如下:          
 vhost_traffic_status_zone;       
 
 #测试nginx配置文件是否正确:
 [root@master1 nginx-1.15.7]# /usr/local/nginx/sbin/nginx -t
nginx: the configuration file /usr/local/nginx/conf/nginx.conf syntax is ok
nginx: configuration file /usr/local/nginx/conf/nginx.conf test is successful

#如果正确没问题,启动nginx
#启动nginx:
[root@master1 nginx-1.15.7]# /usr/local/nginx/sbin/nginx

#访问192.168.1.180/status可以看到nginx监控数据

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-16Flps63-1655106671771)(C:\Users\mack\AppData\Roaming\Typora\typora-user-images\1655105057783.png)]

#3,安装nginx-vts-exporter
[root@master1 prometheus]# ls nginx-vts-exporter-0.5.zip 
nginx-vts-exporter-0.5.zip
[root@master1 prometheus]# du -sh nginx-vts-exporter-0.5.zip
3.2M    nginx-vts-exporter-0.5.zip
[root@master1 prometheus]# unzip nginx-vts-exporter-0.5.zip
[root@master1 prometheus]# mv nginx-vts-exporter-0.5 /usr/local/
[root@master1 prometheus]# cd /usr/local/nginx-vts-exporter-0.5/bin/
[root@master1 bin]# ls -l
total 8932
-rw-r--r-- 1 root root 9145803 Mar 16  2017 nginx-vts-exporter
[root@master1 bin]# chmod a+x nginx-vts-exporter 
You have new mail in /var/spool/mail/root
[root@master1 bin]# ls -l
total 8932
-rwxr-xr-x 1 root root 9145803 Mar 16  2017 nginx-vts-exporter

[root@master1 bin]# nohup ./nginx-vts-exporter -nginx.scrape_uri http://192.168.1.180/status/format/json &
[3] 17102
You have new mail in /var/spool/mail/root
[root@master1 bin]# nohup: ignoring input and appending output to ‘nohup.out’

[root@master1 bin]# 
[root@master1 bin]# cat nohup.out 
2022/06/13 15:31:46 Starting nginx_vts_exporter (version=0.4, branch=fix-docker-error, revision=0f3dbb44a86340d65bf3d6abbcc0ee88663cb419)
2022/06/13 15:31:46 Build context (go=go1.8, user=Administrator@LS--20151110SAS, date=20170316-03:16:26)
2022/06/13 15:31:46 Starting Server at : :9913
2022/06/13 15:31:46 Metrics endpoint: /metrics
2022/06/13 15:31:46 Metrics namespace: nginx
2022/06/13 15:31:46 Scraping information from : http://192.168.1.180/status/format/json

#nginx-vts-exporter的监听端口是9913

#4 修改prometheus-alertmanager-cfg.yaml文件
添加如下job
    - job_name: 'nginx'
        scrape_interval: 5s
        static_configs:
        - targets: ['192.168.1.180:9913']
[root@master1 prometheus]# kubectl delete -f prometheus-alertmanager-cfg.yaml 
configmap "prometheus-config" deleted
[root@master1 prometheus]# kubectl apply -f prometheus-alertmanager-cfg.yaml
configmap/prometheus-config created
[root@master1 prometheus]# kubectl delete -f prometheus-alertmanager-deploy.yaml 
deployment.apps "prometheus-server" deleted
[root@master1 prometheus]# kubectl apply -f prometheus-alertmanager-deploy.yaml
deployment.apps/prometheus-server created


#5 在grafana界面导入nginx json

nfiguration file /usr/local/nginx/conf/nginx.conf test is successful

#如果正确没问题,启动nginx
#启动nginx:
[root@master1 nginx-1.15.7]# /usr/local/nginx/sbin/nginx

#访问192.168.1.180/status可以看到nginx监控数据


[外链图片转存中...(img-16Flps63-1655106671771)]

```bash
#3,安装nginx-vts-exporter
[root@master1 prometheus]# ls nginx-vts-exporter-0.5.zip 
nginx-vts-exporter-0.5.zip
[root@master1 prometheus]# du -sh nginx-vts-exporter-0.5.zip
3.2M    nginx-vts-exporter-0.5.zip
[root@master1 prometheus]# unzip nginx-vts-exporter-0.5.zip
[root@master1 prometheus]# mv nginx-vts-exporter-0.5 /usr/local/
[root@master1 prometheus]# cd /usr/local/nginx-vts-exporter-0.5/bin/
[root@master1 bin]# ls -l
total 8932
-rw-r--r-- 1 root root 9145803 Mar 16  2017 nginx-vts-exporter
[root@master1 bin]# chmod a+x nginx-vts-exporter 
You have new mail in /var/spool/mail/root
[root@master1 bin]# ls -l
total 8932
-rwxr-xr-x 1 root root 9145803 Mar 16  2017 nginx-vts-exporter

[root@master1 bin]# nohup ./nginx-vts-exporter -nginx.scrape_uri http://192.168.1.180/status/format/json &
[3] 17102
You have new mail in /var/spool/mail/root
[root@master1 bin]# nohup: ignoring input and appending output to ‘nohup.out’

[root@master1 bin]# 
[root@master1 bin]# cat nohup.out 
2022/06/13 15:31:46 Starting nginx_vts_exporter (version=0.4, branch=fix-docker-error, revision=0f3dbb44a86340d65bf3d6abbcc0ee88663cb419)
2022/06/13 15:31:46 Build context (go=go1.8, user=Administrator@LS--20151110SAS, date=20170316-03:16:26)
2022/06/13 15:31:46 Starting Server at : :9913
2022/06/13 15:31:46 Metrics endpoint: /metrics
2022/06/13 15:31:46 Metrics namespace: nginx
2022/06/13 15:31:46 Scraping information from : http://192.168.1.180/status/format/json

#nginx-vts-exporter的监听端口是9913

#4 修改prometheus-alertmanager-cfg.yaml文件
添加如下job
    - job_name: 'nginx'
        scrape_interval: 5s
        static_configs:
        - targets: ['192.168.1.180:9913']
[root@master1 prometheus]# kubectl delete -f prometheus-alertmanager-cfg.yaml 
configmap "prometheus-config" deleted
[root@master1 prometheus]# kubectl apply -f prometheus-alertmanager-cfg.yaml
configmap/prometheus-config created
[root@master1 prometheus]# kubectl delete -f prometheus-alertmanager-deploy.yaml 
deployment.apps "prometheus-server" deleted
[root@master1 prometheus]# kubectl apply -f prometheus-alertmanager-deploy.yaml
deployment.apps/prometheus-server created


#5 在grafana界面导入nginx json

你可能感兴趣的:(docker,kubernetes,容器)