【CV】Pytorch中的Tensor常用的类型转换函数

转载自https://www.cnblogs.com/sbj123456789/p/10839020.html,侵删

Pytorch中的Tensor常用的类型转换函数(inplace操作):

(1)数据类型转换

在Tensor后加 .long(), .int(), .float(), .double()等即可,也可以用.to()函数进行转换,所有的Tensor类型可参考https://pytorch.org/docs/stable/tensors.html

(2)数据存储位置转换

CPU张量 ----> GPU张量,使用data.cuda()

GPU张量 ----> CPU张量,使用data.cpu()

(3)与numpy数据类型转换

Tensor---->Numpy 使用 data.numpy(),data为Tensor变量

Numpy ----> Tensor 使用 torch.from_numpy(data),data为numpy变量

(4)与Python数据类型转换

Tensor ----> 单个Python数据,使用data.item(),data为Tensor变量且只能为包含单个数据

Tensor ----> Python list,使用data.tolist(),data为Tensor变量,返回shape相同的可嵌套的list

(5)剥离出一个tensor参与计算,但不参与求导

Tensor后加 .detach()

官方解释为:

Returns a new Tensor, detached from the current graph. The result will never require gradient. Returned Tensor shares the same storage with the original one. In-place modifications on either of them will be seen, and may trigger errors in correctness checks.

(以前这个功能用过.data(),但现在不推荐使用了)



参考:

https://blog.csdn.net/hustchenze/article/details/79154139

https://pytorch.org/docs/stable/tensors.html#torch.Tensor.to

你可能感兴趣的:(pytorch,python,深度学习)