Python学习(5):Numpy

1.np属性事例

>>> import numpy as np
>>> a = np.arange(15).reshape(3,5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.dtype
dtype('int64')
>>> a.size
15
>>> a.itemsize
8
>>> type(a)

>>> 
>>> b = np.array([1,2,3,4,5,6,7,8,9])
>>> b
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> c = np.array([1,2,3,4,5,6,'7','a','b'])
>>> c
array(['1', '2', '3', '4', '5', '6', '7', 'a', 'b'], dtype='>> type(b)

>>> type(c)

>>> c.dtype
dtype('>> b.dtype
dtype('int64')
>>> c.itemsize
84
>>> b.itemsize
8

2.创建

numpy.array

它从任何暴露数组接口的对象,或从返回数组的任何方法创建一个ndarray。

numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

示例 1

import numpy as np 
a = np.array([1,2,3]) 

示例 2

import numpy as np 
a = np.array([[1,  2],  [3,  4]])

示例 3

# 最小维度  
import numpy as np 
a = np.array([1, 2, 3,4,5], ndmin =  2)  
print a

示例 4

# dtype 参数  
import numpy as np 
a = np.array([1,  2,  3], dtype = complex)  
print a

输出如下:

[ 1.+0.j,  2.+0.j,  3.+0.j]

注:传入的参数必须是同一结构,不是同一结构将发生转换。

>>> import numpy as np
>>> a = np.array([1,2,3.5])
>>> a
array([1. , 2. , 3.5])
>>> b = np.array([1,2,3])
>>> b
array([1, 2, 3])
>>> c = np.array(['1',2,3])
>>> c
array(['1', '2', '3'], dtype='>>

array还可以将序列的序列转换成二位数组,可以将序列的序列的序列转换成三维数组,以此类推。

>>> import numpy as np
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
       [2, 3, 4]])
>>> b = np.array([[1,2,3],[2,3,4],[3,4,5]])
>>> b
array([[1, 2, 3],
       [2, 3, 4],
       [3, 4, 5]])
>>>

3.数组操作
在NumPy中,*用于数组间元素对应的乘法,而不是矩阵乘法,矩阵乘法可以用dot()方法来实现。

>>> A = np.array([[1,2],[3,4]])
>>> B = np.array([[0,1],[0,1]])
>>> A
array([[1, 2],
       [3, 4]])
>>> B
array([[0, 1],
       [0, 1]])
>>> A*B                    # elementwise product
array([[0, 2],
       [0, 4]])
>>> A.dot(B)               # matrix product
array([[0, 3],
       [0, 7]])
>>> np.dot(A,B)            # another matrix product
array([[0, 3],
       [0, 7]])

当操作不同类型的数组时,最终的结果数组的类型取决于精度最宽的数组的类型。(即所谓的向上造型)

>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0,pi,3)
>>> b.dtype.name
'float64'
>>> c = a+b
>>> c
array([ 1.        ,  2.57079633,  4.14159265])
>>> c.dtype.name
'float64'
>>> d = np.exp(c*1j)
>>> d
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
       -0.54030231-0.84147098j])
>>> d.dtype.name
'complex128'

ndarray类实现了许多操作数组的一元方法,如求和、求最大值、求最小值等。

>>> a = np.random.random((2,3))
>>> a
array([[0.62181697, 0.26165654, 0.34994938],
       [0.95619296, 0.24614291, 0.42120462]])
>>> a.sum()
2.8569633678947346
>>> a.min()
0.24614290611891454
>>> a.max()
0.9561929625193091
>>>

除了上述一元方法以外,NumPy还提供了操作数组中特定行和列的一元方法,通过制定不同的axis来实现。

>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> b.sum(axis = 0)                   # sum of each column
array([12, 15, 18, 21])
>>> b.sum(axis = 1)                   # sum of each row
array([ 6, 22, 38])
>>> b.min(axis = 0)                   # min of each column
array([0, 1, 2, 3])
>>> b.min(axis = 1)                   # min of each row
array([0, 4, 8])
>>> b.max(axis = 0)                   # max of each column
array([ 8,  9, 10, 11])
>>> b.max(axis = 1)                   # max of each row
array([ 3,  7, 11])
>>> b.cumsum(axis = 1)                # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])
>>> b.cumsum(axis = 0)                # cumulative sum along each column
array([[ 0,  1,  2,  3],
       [ 4,  6,  8, 10],
       [12, 15, 18, 21]])
>>>

3.数组索引和迭代
与Python中定义的list一样,NumPy支持一维数组的索引、切片和迭代。

a = np.arange(20).reshape(4,5)
print (a)
print
print (a[:,[1,3]])

输出结果

[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
 the 2nd and 4th column of a:
[[ 1  3]
 [ 6  8]
 [11 13]
 [16 18]]
>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[3]
27
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1111
>>> a
array([-1111,     1, -1111,    27, -1111,   125,   216,   343,   512,
         729])
>>> a[::-1]
array([  729,   512,   343,   216,   125, -1111,    27, -1111,     1,
       -1111])

多维数组与一维数组相似,其在每个轴上都有一个对应的索引(index),这些索引是在一个逗号分隔的元组(tuple)中给出的。

>>> b = np.arange(15).reshape(3,5)
>>> b
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> b[2,3]
13
>>> b[3,3]
Traceback (most recent call last):
  File "", line 1, in 
IndexError: index 3 is out of bounds for axis 0 with size 3
>>> b[0,0]
0
>>> b[0,4]
4
>>> 
>>> 
>>> b[:, 1]
array([ 1,  6, 11])
>>> b[1, :]
array([5, 6, 7, 8, 9])
>>> b[-1]
array([10, 11, 12, 13, 14])
>>> b.shape
(3, 5)

这里需要注意的是,数组的第一个索引是从0开始的。一维数组和多维数组的迭代,可以参考如下示例:

>>> for row in b:
...     print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]

>>> for element in b.flat:
...     print(element)
...
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40
41
42
43

其中flat属性是array中的每个元素的迭代器。
4. 数组堆叠和切片
NumPy支持将多个数据按照不同的轴进行堆叠:

>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[0., 8.],
       [4., 8.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[1., 4.],
       [4., 1.]])
>>> np.vstack((a,b))
array([[0., 8.],
       [4., 8.],
       [1., 4.],
       [4., 1.]])
>>> np.hstack((a,b))
array([[0., 8., 1., 4.],
       [4., 8., 4., 1.]])

floor()向下取整,hstack()实现数组横向堆叠,vstack()实现数组纵向堆叠。
5.矩阵运算
Numpy同时提供了矩阵对象(matrix)。矩阵对象和数组的差别:1)矩阵是二维的,而数组是任意正整数维的;2)矩阵的*是矩阵乘法,左侧矩阵的列和右侧的行要想等。数组可通过asmatrix或mat转换为矩阵。

a=np.arange(20).reshape(4,5)
a=np.asmatrix(a)

b=np.matrix('1.0 2.0;3.0 4.0')

6.矩阵赋值
b=a矩阵赋值是将b指到a对应数据的内存地址上,a的值改变b也跟着变。想要真的复制用copy

b=a.copy()

7.矩阵操作
1.矩阵转置

#方法1
a=np.transpose(a)
#方法2
b.T

2.矩阵求逆

ia = nlg.inv(a)

3.求特征值和特征向量


你可能感兴趣的:(Python学习(5):Numpy)