tensorflow02

线性回归

连续值得预测

tensorflow02_第1张图片

图中黄线越贴合蓝线,说明模型f越好,预测越准

找w和b,转换找loss极小值

tensorflow02_第2张图片tensorflow02_第3张图片 

tensorflow02_第4张图片 

回归问题实战

tensorflow02_第5张图片

tensorflow02_第6张图片

tensorflow02_第7张图片

手写数字问题 

tensorflow02_第8张图片

tensorflow02_第9张图片 

import  os
import  tensorflow as tf
from    tensorflow import keras
from    tensorflow.keras import layers, optimizers, datasets


os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

(x, y), (x_val, y_val) = datasets.mnist.load_data() 
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(y, dtype=tf.int32)
y = tf.one_hot(y, depth=10)
print(x.shape, y.shape)
train_dataset = tf.data.Dataset.from_tensor_slices((x, y))
train_dataset = train_dataset.batch(200)

 


model = keras.Sequential([ 
    layers.Dense(512, activation='relu'),
    layers.Dense(256, activation='relu'),
    layers.Dense(10)])

optimizer = optimizers.SGD(learning_rate=0.001)


def train_epoch(epoch):

    # Step4.loop
    for step, (x, y) in enumerate(train_dataset):


        with tf.GradientTape() as tape:
            # [b, 28, 28] => [b, 784]
            x = tf.reshape(x, (-1, 28*28))
            # Step1. compute output
            # [b, 784] => [b, 10]
            out = model(x)
            # Step2. compute loss
            loss = tf.reduce_sum(tf.square(out - y)) / x.shape[0]

        # Step3. optimize and update w1, w2, w3, b1, b2, b3
        grads = tape.gradient(loss, model.trainable_variables)
        # w' = w - lr * grad
        optimizer.apply_gradients(zip(grads, model.trainable_variables))

        if step % 100 == 0:
            print(epoch, step, 'loss:', loss.numpy())



def train():

    for epoch in range(30):

        train_epoch(epoch)






if __name__ == '__main__':
    train()

   tensorflow02_第10张图片      

tensorflow02_第11张图片 

tensorflow02_第12张图片 

数据类型

tensorflow02_第13张图片 

tensorflow02_第14张图片 

tensorflow02_第15张图片 

tensorflow02_第16张图片 

tensorflow02_第17张图片 

        tensorflow02_第18张图片 

tensorflow02_第19张图片 创建Tensor

tensorflow02_第20张图片 

tensorflow02_第21张图片 

tensorflow02_第22张图片 

tensorflow02_第23张图片 

tensorflow02_第24张图片 

tensorflow02_第25张图片 

tensorflow02_第26张图片 

tensorflow02_第27张图片 

tensorflow02_第28张图片 

tensorflow02_第29张图片 

索引

tensorflow02_第30张图片 

tensorflow02_第31张图片 

tensorflow02_第32张图片 

维度变换

tensorflow02_第33张图片 

tensorflow02_第34张图片 

Broadcasting

tensorflow02_第35张图片 

tensorflow02_第36张图片 

tensorflow02_第37张图片 

数学运算

tensorflow02_第38张图片 

 tensorflow02_第39张图片

tensorflow02_第40张图片 

tensorflow02_第41张图片 

前向传播(张量) 

 tensorflow02_第42张图片

import  tensorflow as tf
from    tensorflow import keras
from    tensorflow.keras import datasets
import  os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

# x: [60k, 28, 28],
# y: [60k]
(x, y), _ = datasets.mnist.load_data()
# x: [0~255] => [0~1.]
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
y = tf.convert_to_tensor(y, dtype=tf.int32)

print(x.shape, y.shape, x.dtype, y.dtype)
print(tf.reduce_min(x), tf.reduce_max(x))
print(tf.reduce_min(y), tf.reduce_max(y))


train_db = tf.data.Dataset.from_tensor_slices((x,y)).batch(128)
train_iter = iter(train_db)
sample = next(train_iter)
print('batch:', sample[0].shape, sample[1].shape)


# [b, 784] => [b, 256] => [b, 128] => [b, 10]
# [dim_in, dim_out], [dim_out]
w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))

lr = 1e-3

for epoch in range(10): # iterate db for 10
    for step, (x, y) in enumerate(train_db): # for every batch
        # x:[128, 28, 28]
        # y: [128]

        # [b, 28, 28] => [b, 28*28]
        x = tf.reshape(x, [-1, 28*28])

        with tf.GradientTape() as tape: # tf.Variable
            # x: [b, 28*28]
            # h1 = x@w1 + b1
            # [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256]
            h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])
            h1 = tf.nn.relu(h1)
            # [b, 256] => [b, 128]
            h2 = h1@w2 + b2
            h2 = tf.nn.relu(h2)
            # [b, 128] => [b, 10]
            out = h2@w3 + b3

            # compute loss
            # out: [b, 10]
            # y: [b] => [b, 10]
            y_onehot = tf.one_hot(y, depth=10)

            # mse = mean(sum(y-out)^2)
            # [b, 10]
            loss = tf.square(y_onehot - out)
            # mean: scalar
            loss = tf.reduce_mean(loss)

        # compute gradients
        grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
        # print(grads)
        # w1 = w1 - lr * w1_grad
        w1.assign_sub(lr * grads[0])
        b1.assign_sub(lr * grads[1])
        w2.assign_sub(lr * grads[2])
        b2.assign_sub(lr * grads[3])
        w3.assign_sub(lr * grads[4])
        b3.assign_sub(lr * grads[5])


        if step % 100 == 0:
            print(epoch, step, 'loss:', float(loss))

 

你可能感兴趣的:(人工智能)