在ros仿真平台(ros_tutorials)上做《考虑运动受限的履带式移动机器人轨迹跟踪控制》的仿真实验
跟踪控制公式:
①角速度有限时间控制律和线速度滑模变结构控制律跟踪函数:
不限速度
② 原跟踪函数:
v p = 1 2 e x 2 + e y 2 {{\text{v}}_p}{\text{ = }}\frac{1}{2}\sqrt {{e_x}^2 + {e_y}^2} vp = 21ex2+ey2
ω p = 4 × arctan ( e y e x ) {\omega _p}{\text{ = }}4 \times \arctan (\frac{{{e_y}}}{{{e_x}}}) ωp = 4×arctan(exey)
这里以ros自带的乌龟案例为基础,进行改写。首先,生成第一只乌龟让其做圆周运动或直线运动,作为跟踪的目标;再生成第二只乌龟,用案例中的跟踪控制方法,作为对比实验;最后,生成第三只乌龟,用上文中设计的跟踪控制,进行实验。
代码下载
在放置文件的路径下打开终端,运行
git clone https://gitee.com/Luweizhiyuan2020/demo02_ws.git
编译文件
cd demo02_ws
catkin_make
运行文件
roscore
source demo02_ws/devel/setup.bash
roslaunch learning_tf start_tf_demo_restricted_movement.launch
注:速度不受限与受限是两个实验只需改动start_tf_demo_restricted_movement.launch中的注释部分,不受限用;受限用;默认受限
1速度不受限
/**
* 底盘控制基于利亚普洛夫控制律
*/
#include
#include
#include
#include
#include "turtlesim/Pose.h"
#include
static double x1,yl,yaw1,pitch1,roll1, x2,y2,yaw2,pitch2,roll2,
dx,dy,dyaw ,dpitch,droll, yaw, pitch, roll,
ex,ey,eyaw, ex_t,ey_t,eyaw_t,
v1,omega1,v2,omega2,
K1,K2,K3,
t,ts,A,P,Q,K,dyaw0=0,d,flag0;
static ros::Subscriber sub1;
static ros::Subscriber sub2;
static ros::Publisher turtle_vel;
void doPose1(const turtlesim::Pose::ConstPtr & p){
x1=p->x;
yl=p->y;
yaw1=p->theta;
v1=p->linear_velocity;
omega1=p->angular_velocity;
}
void doPose2(const turtlesim::Pose::ConstPtr& p){
x2=p->x;
y2=p->y;
yaw2=p->theta;
v2=p->linear_velocity;
omega2=p->angular_velocity;
}
// 方法一:订阅在发布中运行
int main(int argc, char** argv)
{
setlocale(LC_ALL,"");
// 初始化ROS节点
ros::init(argc, argv, "my_tf_listener");
// 创建节点句柄
ros::NodeHandle node;
// 请求产生turtle3
ros::service::waitForService("/spawn");
ros::ServiceClient add_turtle = node.serviceClient<turtlesim::Spawn>("/spawn");
turtlesim::Spawn srv;
srv.request.x=9.0;
srv.request.y=9.0;
srv.request.theta=3.14;
add_turtle.call(srv);
sub1 = node.subscribe<turtlesim::Pose>("/turtle1/pose",1000,doPose1);
sub2 = node.subscribe<turtlesim::Pose>("/turtle3/pose",1000,doPose2);
// 创建发布turtle2速度控制指令的发布者
turtle_vel = node.advertise<geometry_msgs::Twist>("/turtle3/cmd_vel", 10);
// 创建tf的监听器
tf::TransformListener listener;
ros::Rate rate(10);
while (node.ok())
{
// 获取turtle1与turtle2坐标系之间的tf数据
tf::StampedTransform transform;
try
{
listener.waitForTransform("/turtle3", "/turtle1", ros::Time(0), ros::Duration(3.0));
listener.lookupTransform("/turtle3", "/turtle1", ros::Time(0), transform);
}
catch (tf::TransformException &ex)
{
ROS_ERROR("%s",ex.what());
ros::Duration(1.0).sleep();
continue;
}
dx=x1-x2;
dy=yl-y2;
dyaw=yaw1-yaw2;
ex_t=cos(yaw2)*dx+sin(yaw2)*dy;
ey_t=-sin(yaw2)*dx+cos(yaw2)*dy;
eyaw_t=dyaw;
ex=transform.getOrigin().x();
ey=transform.getOrigin().y();
transform.getBasis().getEulerYPR(eyaw, pitch, roll);
geometry_msgs::Twist vel_msg;
K1=0.909;
K2=1.250;
K3=0.818;
A=1;
P=9;
Q=11;
K=0.1;
d=0.02;
if(yaw1!=0&&yaw2!=0&&dyaw0==0){
dyaw0=eyaw;
ts=Q/A/(Q-P)*pow(abs(dyaw0),(Q-P)/Q);
// ROS_INFO("yaw1=%.2f",yaw1);
// ROS_INFO("yaw2=%.2f",yaw2);
t++;
// ROS_INFO("t=%.2f",t);
}
if(t>0){
t++;
// ROS_INFO("t=%.2f",t);
}
if(eyaw>0){
flag0=1;
}
else{
flag0=-1;
}
if(t==2){
vel_msg.linear.x =0;
vel_msg.angular.z =0;
// ROS_INFO("t1=%.2f",t);
}else if(t>2&&t<ts*10){
vel_msg.angular.z = omega1+flag0*A*pow(eyaw,(9/11));//+A*pow(eyaw,(9/11))
vel_msg.linear.x =v1+omega1*ex+omega1*ey+K*(ex-ey)/(abs(ex-ey)+d);
// ROS_INFO("t2=%.2f",t);
}else if(t>ts*10){
vel_msg.angular.z = omega1+flag0*A*pow(eyaw,(9/11));//+A*pow(eyaw,(9/11))
vel_msg.linear.x =v1+omega1*ex+omega1*ey+K*(ex-ey)/(abs(ex-ey)+d);
// ROS_INFO("t3=%.2f",t);
}
ROS_INFO("test=%.2f",pow(-1,1/11));
//lyapunov
// vel_msg.linear.x = v1*cos(eyaw)+K2*ex;
// vel_msg.angular.z = omega1+ey*v1/K1+K3*sin(eyaw)/K1;
//源函数
// vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(),
// transform.getOrigin().x());
// vel_msg.linear.x = 0.5 * sqrt(pow(transform.getOrigin().x(), 2) +
// pow(transform.getOrigin().y(), 2));
turtle_vel.publish(vel_msg);
rate.sleep();
ros::spinOnce();
}
return 0;
};
2速度受限
/*
* 底盘控制基于利亚普洛夫控制律
*/
#include
#include
#include
#include
#include "turtlesim/Pose.h"
#include
static double x1,yl,yaw1,pitch1,roll1, x2,y2,yaw2,pitch2,roll2,
dx,dy,dyaw ,dpitch,droll, yaw, pitch, roll,
ex,ey,eyaw, ex_t,ey_t,eyaw_t,
v1,omega1,v2,omega2,
K1,K2,K3,
t,ts,A,P,Q,K,dyaw0=0,d,flag0,
v3_pre,omega3_pre,v3_max,omega3_max,
a3,beita3,a3_pre,beita3_pre,a3_max,beita3_max,dt,
v3,omega3;
static ros::Subscriber sub1;
static ros::Subscriber sub2;
static ros::Publisher turtle_vel;
void doPose1(const turtlesim::Pose::ConstPtr & p){
x1=p->x;
yl=p->y;
yaw1=p->theta;
v1=p->linear_velocity;
omega1=p->angular_velocity;
}
void doPose2(const turtlesim::Pose::ConstPtr& p){
x2=p->x;
y2=p->y;
yaw2=p->theta;
v2=p->linear_velocity;
omega2=p->angular_velocity;
}
int sgn(double para)
{
if (para> 0) return 1;
if (para <0) return -1;
return 0;
}
// 方法一:订阅在发布中运行
int main(int argc, char** argv)
{
setlocale(LC_ALL,"");
// 初始化ROS节点
ros::init(argc, argv, "my_tf_listener");
// 创建节点句柄
ros::NodeHandle node;
// 请求产生turtle3
ros::service::waitForService("/spawn");
ros::ServiceClient add_turtle = node.serviceClient<turtlesim::Spawn>("/spawn");
turtlesim::Spawn srv;
srv.request.x=9.0;
srv.request.y=9.0;
srv.request.theta=3.14;
add_turtle.call(srv);
sub1 = node.subscribe<turtlesim::Pose>("/turtle1/pose",1000,doPose1);
sub2 = node.subscribe<turtlesim::Pose>("/turtle3/pose",1000,doPose2);
// 创建发布turtle2速度控制指令的发布者
turtle_vel = node.advertise<geometry_msgs::Twist>("/turtle3/cmd_vel", 10);
// 创建tf的监听器
tf::TransformListener listener;
ros::Rate rate(10);
while (node.ok())
{
// 获取turtle1与turtle2坐标系之间的tf数据
tf::StampedTransform transform;
try
{
listener.waitForTransform("/turtle3", "/turtle1", ros::Time(0), ros::Duration(3.0));
listener.lookupTransform("/turtle3", "/turtle1", ros::Time(0), transform);
}
catch (tf::TransformException &ex)
{
ROS_ERROR("%s",ex.what());
ros::Duration(1.0).sleep();
continue;
}
dx=x1-x2;
dy=yl-y2;
dyaw=yaw1-yaw2;
ex_t=cos(yaw2)*dx+sin(yaw2)*dy;
ey_t=-sin(yaw2)*dx+cos(yaw2)*dy;
eyaw_t=dyaw;
ex=transform.getOrigin().x();
ey=transform.getOrigin().y();
transform.getBasis().getEulerYPR(eyaw, pitch, roll);
geometry_msgs::Twist vel_msg;
// K1=0.909;
// K2=1.250;
// K3=0.818;
A=1;
P=9;
Q=11;
K=0.1;
d=0.02;
dt=0.1;
if(yaw1!=0&&yaw2!=0&&dyaw0==0){
dyaw0=eyaw;
ts=Q/A/(Q-P)*pow(abs(dyaw0),(Q-P)/Q);
// ROS_INFO("yaw1=%.2f",yaw1);
// ROS_INFO("yaw2=%.2f",yaw2);
t++;
// ROS_INFO("t=%.2f",t);
}
if(t>0){
t++;
omega3= omega1+sgn(eyaw)*A*pow(eyaw,(9/11));//+A*pow(eyaw,(9/11))
v3 =v1+omega1*ex+omega1*ey+K*(ex-ey)/(abs(ex-ey)+d);
}
v3_max=2.0;
omega3_max=1.0;
a3_max=20;
beita3_max=15;
a3=(v3-v3_pre)/dt;
beita3=(omega3-omega3_pre)/dt;
//测最大加速度
// if(abs(a3)>a3_max)a3_max=abs(a3);
// ROS_INFO("a3_max=%.2f",a3_max);
// if(abs(beita3)>beita3_max)beita3_max=abs(beita3);
// ROS_INFO("beita3_max=%.2f",beita3_max);
if(beita3>beita3_max){
vel_msg.angular.z =omega3_pre+sgn(omega3-omega3_pre)*beita3_max*dt;
// ROS_INFO("t1=%.2f",t);
}else if(omega3>omega3_max){
vel_msg.angular.z = omega3_max*sgn(omega3);
// ROS_INFO("t2=%.2f",t);
}else{
vel_msg.angular.z = omega3;
// ROS_INFO("t3=%.2f",t);
}
if(a3>a3_max){
vel_msg.linear.x =v3_pre+sgn(v3-v3_pre)*a3_max*dt;
// ROS_INFO("t1=%.2f",t);
}else if(v3>v3_max){
vel_msg.linear.x =v3_max*sgn(v3);
// ROS_INFO("t2=%.2f",t);
}else{
vel_msg.linear.x =v3;
// ROS_INFO("t3=%.2f",t);
}
v3_pre=v3;
omega3_pre=omega3;
a3_pre=a3;
beita3_pre=beita3;
//角度控制律,速度滑膜
// if(t==2){
// vel_msg.linear.x =0;
// vel_msg.angular.z =0;
// // ROS_INFO("t1=%.2f",t);
// }else if(t>2&&t
// vel_msg.angular.z = omega1+flag0*A*pow(eyaw,(9/11));//+A*pow(eyaw,(9/11))
// vel_msg.linear.x =v1+omega1*ex+omega1*ey+K*(ex-ey)/(abs(ex-ey)+d);
// // ROS_INFO("t2=%.2f",t);
// }else if(t>ts*10){
// vel_msg.angular.z = omega1+flag0*A*pow(eyaw,(9/11));//+A*pow(eyaw,(9/11))
// vel_msg.linear.x =v1+omega1*ex+omega1*ey+K*(ex-ey)/(abs(ex-ey)+d);
// // ROS_INFO("t3=%.2f",t);
// }
//lyapunov控制律
// vel_msg.linear.x = v1*cos(eyaw)+K2*ex;
// vel_msg.angular.z = omega1+ey*v1/K1+K3*sin(eyaw)/K1;
//源函数
// vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(),
// transform.getOrigin().x());
// vel_msg.linear.x = 0.5 * sqrt(pow(transform.getOrigin().x(), 2) +
// pow(transform.getOrigin().y(), 2));
turtle_vel.publish(vel_msg);
rate.sleep();
ros::spinOnce();
}
return 0;
};
注:①这里只提供了利亚普洛夫控制律跟踪控制的代码,其他代码请参考古月居的坐标变换:https://www.bilibili.com/video/BV1zt411G7Vn?p=18
②重点多话题订阅和发布
链接: https://www.bilibili.com/video/BV1zt411G7Vn?p=18.
链接: https://www.zhangqiaokeyan.com/academic-journal-cn_computer-measurement-control_thesis/0201242108175.html.