import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
X, y = datasets.make_moons(n_samples=1000, noise=0.2, random_state=100)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
def make_plot(X, y, plot_name):
plt.figure(figsize=(12, 8))
plt.title(plot_name, fontsize=30)
plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^')
plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o')
make_plot(X, y, "Classification Dataset Visualization ")
class Layer:
def __init__(self, n_input, n_output, activation=None, weights=None, bias=None):
"""
:param int n_input: 输入节点数
:param int n_output: 输出节点数
:param str activation: 激活函数类型
:param weights: 权值张量,默认类内部生成
:param bias: 偏置,默认类内部生成
"""
self.weights = weights if weights is not None else np.random.randn(n_input, n_output) * np.sqrt(1 / n_output)
self.bias = bias if bias is not None else np.random.rand(n_output) * 0.1
self.activation = activation
self.activation_output = None
self.error = None
self.delta = None
def activate(self, X):
r = np.dot(X, self.weights) + self.bias
self.activation_output = self._apply_activation(r)
return self.activation_output
def _apply_activation(self, r):
if self.activation is None:
return r
elif self.activation == 'relu':
return np.maximum(r, 0)
elif self.activation == 'tanh':
return np.tanh(r)
elif self.activation == 'sigmoid':
return 1 / (1 + np.exp(-r))
return r
def apply_activation_derivative(self, r):
if self.activation is None:
return np.ones_like(r)
elif self.activation == 'relu':
grad = np.array(r, copy=True)
grad[r > 0] = 1.
grad[r <= 0] = 0.
return grad
elif self.activation == 'tanh':
return 1 - r ** 2
elif self.activation == 'sigmoid':
return r * (1 - r)
return r
class NeuralNetwork:
def __init__(self):
self.layers = []
def add_layer(self, layer):
self.layers.append(layer)
def feed_forward(self, X):
for layer in self.layers:
X = layer.activate(X)
return X
def backpropagation(self, X, y, learning_rate):
output = self.feed_forward(X)
for i in reversed(range(len(self.layers))):
layer = self.layers[i]
if layer == self.layers[-1]:
layer.error = y - output
layer.delta = layer.error * layer.apply_activation_derivative(output)
else:
next_layer = self.layers[i + 1]
layer.error = np.dot(next_layer.weights, next_layer.delta)
layer.delta = layer.error * layer.apply_activation_derivative(layer.activation_output)
for i in range(len(self.layers)):
layer = self.layers[i]
o_i = np.atleast_2d(X if i == 0 else self.layers[i - 1].activation_output)
layer.weights += layer.delta * o_i.T * learning_rate
def train(self, X_train, X_test, y_train, y_test, learning_rate, max_epochs):
y_onehot = np.zeros((y_train.shape[0], 2))
y_onehot[np.arange(y_train.shape[0]), y_train] = 1
mses = []
for i in range(max_epochs):
for j in range(len(X_train)):
self.backpropagation(X_train[j], y_onehot[j], learning_rate)
if i % 10 == 0:
mse = np.mean(np.square(y_onehot - self.feed_forward(X_train)))
mses.append(mse)
print('Epoch: #%s, MSE: %f, Accuracy: %.2f%%' %
(i, float(mse), self.accuracy(self.predict(X_test), y_test.flatten()) * 100))
return mses
def accuracy(self, y_predict, y_test):
return np.sum(y_predict == y_test) / len(y_test)
def predict(self, X_predict):
y_predict = self.feed_forward(X_predict)
y_predict = np.argmax(y_predict, axis=1)
return y_predict
nn = NeuralNetwork()
nn.add_layer(Layer(2, 25, 'sigmoid'))
nn.add_layer(Layer(25, 50, 'sigmoid'))
nn.add_layer(Layer(50, 25, 'sigmoid'))
nn.add_layer(Layer(25, 2, 'sigmoid'))
nn.train(X_train, X_test, y_train, y_test, learning_rate=0.01, max_epochs=50)
def plot_decision_boundary(model, axis):
x0, x1 = np.meshgrid(
np.linspace(axis[0], axis[1], int((axis[1] - axis[0]) * 100)).reshape(1, -1),
np.linspace(axis[2], axis[3], int((axis[3] - axis[2]) * 100)).reshape(-1, 1)
)
X_new = np.c_[x0.ravel(), x1.ravel()]
y_predic = model.predict(X_new)
zz = y_predic.reshape(x0.shape)
from matplotlib.colors import ListedColormap
custom_cmap = ListedColormap(['#EF9A9A', '#FFF590', '#90CAF9'])
plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
plt.figure(figsize=(12, 8))
plot_decision_boundary(nn, [-2, 2.5, -1, 2])
plt.scatter(X[y == 0, 0], X[y == 0, 1])
plt.scatter(X[y == 1, 0], X[y == 1, 1])
plt.show()