InnoDB一棵B+树可以存放多少行数据?
这个问题的简单回答是:约2千万
。为什么是这么多呢?因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构、数据组织方式说起。
在计算机中磁盘
存储数据最小单元是扇区
,一个扇区的大小是512字节
,而文件系统
(例如XFS/EXT4)他的最小单元是块
,一个块的大小是4k
,而对于我们的InnoDB存储引擎
也有自己的最小储存单元——页(Page)
,一个页的大小是16K
。
innodb的所有数据文件(后缀为ibd的文件),他的大小始终都是16384(16k)
的整数倍。
磁盘扇区、文件系统、InnoDB存储引擎都有各自的最小存储单元。在MySQL中我们的InnoDB页的大小默认是16k,当然也可以通过参数设置
。
如select * from user where id=5;
这里id是主键,我们通过这棵B+树来查找,首先找到根页,你怎么知道user表的根页在哪呢?其实每张表的根页位置在表空间文件中是固定的,即page number=3的页(这点我们下文还会进一步证明),找到根页后,通过二分查找法
,定位到id=5的数据应该在指针P5指向的页中,那么进一步去page number=5的页中查找,同样通过二分查询法
即可找到id=5的记录。
现在我们清楚了InnoDB中主键索引B+树是如何组织数据、查询数据的,我们总结一下
:
1、InnoDB存储引擎的最小存储单元是页
,页可以用于存放数据
也可以用于存放键值+指针
,在B+树中叶子节点存放数据,非叶子节点存放键值+指针。
2、索引组织表通过非叶子节点的二分查找法
以及指针确定数据在哪个页中,进而在去数据页中查找到需要的数据;
那么回到我们开始的问题,通常一棵B+树可以存放多少行数据?
这里我们先假设B+树高为2
,即存在一个根节点和若干个叶子节点,那么这棵B+树的存放总记录数为:根节点指针数*单个叶子节点记录行数。
上文我们已经说明单个叶子节点(页)中的记录数=16K/1K=16。(这里假设一行记录的数据大小为1k,实际上
现在很多互联网业务数据记录大小通常就是1K左右
)。
那么现在我们需要计算出非叶子节点能存放多少指针
,其实这也很好算,我们假设主键ID为bigint类型,长度为8字节
,而指针大小
在InnoDB源码中设置为6字节
,这样一共14字节,我们一个页中能存放多少这样的单元,其实就代表有多少指针,即16384/14=1170
。那么可以算出一棵高度为2的B+树
,能存放1170*16=18720条
这样的数据记录。
根据同样的原理我们可以算出一个高度为3的B+树
可以存放:1170*1170*16=21902400条
这样的记录。所以在InnoDB中B+树高度一般为1-3层
,它就能满足千万级的数据存储
。在查找数据时 一次页的查找代表一次IO
, 所以通过主键索引查询通常 只需要1-3次IO操作
即可查找到数据。
索引存储
从抽象角度看,主存是一系列的存储单元组成的矩阵,每个存储单元存储固定大小的数据。每个存储单元有唯一的地址,现代主存的编址规则比较复杂,这里将其简化成一个二维地址:通过一个行地址和一个列地址可以唯一定位到一个存储单元。图5展示了一个4 x 4的主存模型。
主存的存取过程如下:
当系统需要读取主存时,则将地址信号放到地址总线上传给主存,主存读到地址信号后,解析信号并定位到指定存储单元,然后将此存储单元数据放到数据总线上,供其它部件读取。
写主存的过程类似,系统将要写入单元地址和数据分别放在地址总线和数据总线上,主存读取两个总线的内容,做相应的写操作。
这里可以看出,主存存取的时间仅与存取次数呈线性关系,因为不存在机械操作,两次存取的数据的“距离”不会对时间有任何影响,例如,先取A0再取A1和先取A0再取D3的时间消耗是一样的。
上文说过,索引一般以文件形式存储在磁盘上,索引检索需要磁盘I/O操作。与主存不同,磁盘I/O存在机械运动耗费,因此磁盘I/O的时间消耗是巨大的。
到这里终于可以分析B-/+Tree索引的性能了。
上文说过一般使用磁盘I/O次数评价索引结构的优劣。先从B-Tree分析,根据B-Tree的定义,可知检索一次最多需要访问h个节点。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:
每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。
B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。
综上所述,用B-Tree作为索引结构效率是非常高的。
而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。
上文还说过,B+Tree更适合外存索引,原因和内节点出度d有关。从上面分析可以看到,d越大索引的性能越好,而出度的上限取决于节点内key和data的大小:
floor表示向下取整。由于B+Tree内节点去掉了data域,因此可以拥有更大的出度,拥有更好的性能。
这一章从理论角度讨论了与索引相关的数据结构与算法问题,下一章将讨论B+Tree是如何具体实现为MySQL中索引,同时将结合MyISAM和InnDB存储引擎介绍非聚集索引和聚集索引两种不同的索引实现形式。
https://www.cnblogs.com/crazylqy/p/7611069.html
这里设表一共有三列,假设我们以Col1为主键,则图8是一个MyISAM表的主索引(Primary key)示意。可以看出MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求key是唯一的,而辅助索引的key可以重复。如果我们在Col2上建立一个辅助索引,则此索引的结构如下图所示:
样也是一颗B-Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为首先按照B-Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。
MyISAM的索引方式也叫做“非聚集”的,之所以这么称呼是为了与InnoDB的聚集索引区分
图10是InnoDB主索引(同时也是数据文件)的示意图,可以看到叶节点包含了完整的数据记录。这种索引叫做聚集索引。因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整型。
第二个与MyISAM索引的不同是InnoDB的辅助索引data域存储相应记录主键的值而不是地址。换句话说,InnoDB的所有辅助索引都引用主键作为data域。例如,图11为定义在Col3上的一个辅助索引
这里以英文字符的ASCII码作为比较准则。聚集索引这种实现方式使得按主键的搜索十分高效,但是辅助索引搜索需要检索两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录
解不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助,例如知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有辅助索引都引用主索引,过长的主索引会令辅助索引变得过大。再例如,用非单调的字段作为主键在InnoDB中不是个好主意,因为InnoDB数据文件本身是一颗B+Tree,非单调的主键会造成在插入新记录时数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。
MySQL 索引的“创建”原则?
最适合索引的列是出现在 WHERE
子句中的列,或连接子句中的列,而不是出现在 SELECT
关键字后的列
索引列的基数越大,索引效果越好。
B+Tree 相对于 B-Tree 有几点不同:
4、主键 ID 建议使用整型。因为,每个主键索引的 B+Tree 节点的键值可以存储更多主键 ID ,每个非主键索引的 B+Tree 节点的数据可以存储更多主键 ID 。
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
上图的
处,MySQL 通过 MVCC + 事务第一次调用 SELECT
语句才生成快照,实现其在可重复读(repeatable-read)的隔离级别下,不存在幻读问题
非唯一索引列,gap锁定一个范围
唯一索引,主键索引就会 只锁记录行
没有索引,全表就会加gap锁
MVCC 介绍:全称多版本并发控制。
innoDB 每个聚集索引都有 4 个隐藏字段,分别是主键(RowID),最近更改的事务 ID(MVCC 核心),Undo Log 的指针(隔离核心),索引删除标记(当删除时,不会立即删除,而是打标记,然后异步删除);
本质上,MVCC 就是用 Undo Log 链表实现。
MVCC 的实现方式:事务以排它锁的方式修改原始数据,把修改前的数据存放于 Undo Log,通过回滚指针与数据关联,如果修改成功,什么都不做,如果修改失败,则恢复 Undo Log 中的数据。
多说一句,通常我们认为 MVCC 是类似乐观锁的方式,即使用版本号,而实际上,innoDB 不是这么实现的。当然,这不影响我们使用 MySql。
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
为什么将 插入/更新/删除 操作,都归为当前读?可以看看下面这个 更新 操作,在数据库中的执行流程:
从图中,可以看到,一个Update操作的具体流程。当Update SQL被发给MySQL后,MySQL Server会根据where条件,读取第一条满足条件的记录,然后InnoDB引擎会将第一条记录返回,并加锁 (current read)。待MySQL Server收到这条加锁的记录之后,会再发起一个Update请求,更新这条记录。一条记录操作完成,再读取下一条记录,直至没有满足条件的记录为止。因此,Update操作内部,就包含了一个当前读。同理,Delete操作也一样。Insert操作会稍微有些不同,简单来说,就是Insert操作可能会触发Unique Key的冲突检查,也会进行一个当前读。
注:根据上图的交互,针对一条当前读的SQL语句,InnoDB与MySQL Server的交互,是一条一条进行的,因此,加锁也是一条一条进行的。先对一条满足条件的记录加锁,返回给MySQL Server,做一些DML操作;然后在读取下一条加锁,直至读取完毕。
InnoDB存储引擎的数据组织方式,是聚簇索引表:完整的记录,存储在主键索引中,通过主键索引,就可以获取记录所有的列。关于聚簇索引表的组织方式,可以参考MySQL的官方文档:Clustered and Secondary Indexes 。本文假设读者对这个,已经有了一定的认识,就不再做具体的介绍。接下来的部分,主键索引/聚簇索引 两个名称,会有一些混用,望读者知晓。
传统RDBMS加锁的一个原则,就是2PL (二阶段锁):Two-Phase Locking。相对而言,2PL比较容易理解,说的是锁操作分为两个阶段:加锁阶段与解锁阶段,并且保证加锁阶段与解锁阶段不相交。下面,仍旧以MySQL为例,来简单看看2PL在MySQL中的实现。
从上图可以看出,2PL就是将加锁/解锁分为两个完全不相交的阶段。加锁阶段:只加锁,不放锁。解锁阶段:只放锁,不加锁。
注:在前面八种组合下,也就是RC,RR隔离级别下,SQL1:select操作均不加锁,采用的是快照读,因此在下面的讨论中就忽略了,主要讨论SQL2:delete操作的加锁。
这个组合,是最简单,最容易分析的组合。id是主键,Read Committed隔离级别,给定SQL:delete from t1 where id = 10; 只需要将主键上,id = 10的记录加上X锁即可。如下图所示:
组合二:id唯一索引+RC
这个组合,id不是主键,而是一个Unique的二级索引键值。那么在RC隔离级别下,delete from t1 where id = 10; 需要加什么锁呢?见下图:
此组合中,id是unique索引,而主键是name列。此时,加锁的情况由于组合一有所不同。由于id是unique索引,因此delete语句会选择走id列的索引进行where条件的过滤,在找到id=10的记录后,首先会将unique索引上的id=10索引记录加上X锁,同时,会根据读取到的name列,回主键索引(聚簇索引),然后将聚簇索引上的name = ‘d’ 对应的主键索引项加X锁。为什么聚簇索引上的记录也要加锁?试想一下,如果并发的一个SQL,是通过主键索引来更新:update t1 set id = 100 where name = ‘d’; 此时,如果delete语句没有将主键索引上的记录加锁,那么并发的update就会感知不到delete语句的存在,违背了同一记录上的更新/删除需要串行执行的约束。
结论:若id列是unique列,其上有unique索引。那么SQL需要加两个X锁,一个对应于id unique索引上的id = 10的记录,另一把锁对应于聚簇索引上的[name='d',id=10]的记录。
相对于组合一、二,组合三又发生了变化,隔离级别仍旧是RC不变,但是id列上的约束又降低了,id列不再唯一,只有一个普通的索引。假设delete from t1 where id = 10; 语句,仍旧选择id列上的索引进行过滤where条件,那么此时会持有哪些锁?同样见下图:
根据此图,可以看到,首先,id列索引上,满足id = 10查询条件的记录,均已加锁。同时,这些记录对应的主键索引上的记录也都加上了锁。与组合二唯一的区别在于,组合二最多只有一个满足等值查询的记录,而组合三会将所有满足查询条件的记录都加锁。
结论:若id列上有非唯一索引,那么对应的所有满足SQL查询条件的记录,都会被加锁。同时,这些记录在主键索引上的记录,也会被加锁。
相对于前面三个组合,这是一个比较特殊的情况。id列上没有索引,where id = 10;这个过滤条件,没法通过索引进行过滤,那么只能走全表扫描做过滤。对应于这个组合,SQL会加什么锁?或者是换句话说,全表扫描时,会加什么锁?这个答案也有很多:有人说会在表上加X锁;有人说会将聚簇索引上,选择出来的id = 10;的记录加上X锁。那么实际情况呢?请看下图:
由于id列上没有索引,因此只能走聚簇索引,进行全部扫描。从图中可以看到,满足删除条件的记录有两条,但是,聚簇索引上所有的记录,都被加上了X锁。无论记录是否满足条件,全部被加上X锁。既不是加表锁,也不是在满足条件的记录上加行锁。
有人可能会问?为什么不是只在满足条件的记录上加锁呢?这是由于MySQL的实现决定的。如果一个条件无法通过索引快速过滤,那么存储引擎层面就会将所有记录加锁后返回,然后由MySQL Server层进行过滤。因此也就把所有的记录,都锁上了。
注:在实际的实现中,MySQL有一些改进,在MySQL Server过滤条件,发现不满足后,会调用unlock_row方法,把不满足条件的记录放锁 (违背了2PL的约束)。这样做,保证了最后只会持有满足条件记录上的锁,但是每条记录的加锁操作还是不能省略的。
结论:若id列上没有索引,SQL会走聚簇索引的全扫描进行过滤,由于过滤是由MySQL Server层面进行的。因此每条记录,无论是否满足条件,都会被加上X锁。但是,为了效率考量,MySQL做了优化,对于不满足条件的记录,会在判断后放锁,最终持有的,是满足条件的记录上的锁,但是不满足条件的记录上的加锁/放锁动作不会省略。同时,优化也违背了2PL的约束。
违反了2PL的约束,是mysql优化自己释放锁了,而不是事务结束后再释放锁
上面的四个组合,都是在Read Committed隔离级别下的加锁行为,接下来的四个组合,是在Repeatable Read隔离级别下的加锁行为。
组合五,id列是主键列,Repeatable Read隔离级别,针对delete from t1 where id = 10; 这条SQL,加锁与组合一:[id主键,Read Committed]一致。
与组合五类似,组合六的加锁,与组合二:[id唯一索引,Read Committed]一致。两个X锁,id唯一索引满足条件的记录上一个,对应的聚簇索引上的记录一个。
还记得前面提到的MySQL的四种隔离级别的区别吗?RC隔离级别允许幻读,而RR隔离级别,不允许存在幻读。但是在组合五、组合六中,加锁行为又是与RC下的加锁行为完全一致。那么RR隔离级别下
此图,相对于组合三:[id列上非唯一锁,Read Committed]看似相同,其实却有很大的区别。最大的区别在于,这幅图中多了一个GAP锁,而且GAP锁看起来也不是加在记录上的,倒像是加载两条记录之间的位置,GAP锁有何用?
其实这个多出来的GAP锁,就是RR隔离级别,相对于RC隔离级别,不会出现幻读的关键。确实,GAP锁锁住的位置,也不是记录本身,而是两条记录之间的GAP。
如何保证两次当前读返回一致的记录,那就需要在第一次当前读与第二次当前读之间,其他的事务不会插入新的满足条件的记录并提交。为了实现这个功能,GAP锁应运而生
如图中所示,有哪些位置可以插入新的满足条件的项 (id = 10),考虑到B+树索引的有序性,满足条件的项一定是连续存放的。记录[6,c]之前,不会插入id=10的记录;[6,c]与[10,b]间可以插入[10, aa];[10,b]与[10,d]间,可以插入新的[10,bb],[10,c]等;[10,d]与[11,f]间可以插入满足条件的[10,e],[10,z]等;而[11,f]之后也不会插入满足条件的记录。因此,为了保证[6,c]与[10,b]间,[10,b]与[10,d]间,[10,d]与[11,f]不会插入新的满足条件的记录,MySQL选择了用GAP锁,将这三个GAP给锁起来
Insert操作,如insert [10,aa],首先会定位到[6,c]与[10,b]间,然后在插入前,会检查这个GAP是否已经被锁上,如果被锁上,则Insert不能插入记录。因此,通过第一遍的当前读,不仅将满足条件的记录锁上 (X锁),与组合三类似。同时还是增加3把GAP锁,将可能插入满足条件记录的3个GAP给锁上,保证后续的Insert不能插入新的id=10的记录,也就杜绝了同一事务的第二次当前读,出现幻象的情况。
有心的朋友看到这儿,可以会问:既然防止幻读,需要靠GAP锁的保护,为什么组合五、组合六,也是RR隔离级别,却不需要加GAP锁呢?
首先,这是一个好问题。其次,回答这个问题,也很简单。GAP锁的目的,是为了防止同一事务的两次当前读,出现幻读的情况。而组合五,id是主键;组合六,id是unique键,都能够保证唯一性。一个等值查询,最多只能返回一条记录,而且新的相同取值的记录,一定不会在新插入进来,因此也就避免了GAP锁的使用。其实,针对此问题,还有一个更深入的问题:如果组合五、组合六下,针对SQL:select * from t1 where id = 10 for update; 第一次查询,没有找到满足查询条件的记录,那么GAP锁是否还能够省略?此问题留给大家思考
我觉得是会加GAP锁的,因为有可能别的事务添加了一条id=10的记录
结论:Repeatable Read隔离级别下,id列上有一个非唯一索引,对应SQL:delete from t1 where id = 10; 首先,通过id索引定位到第一条满足查询条件的记录,加记录上的X锁,加GAP上的GAP锁,然后加主键聚簇索引上的记录X锁,然后返回;然后读取下一条,重复进行。直至进行到第一条不满足条件的记录[11,f],此时,不需要加记录X锁,但是仍旧需要加GAP锁,最后返回结束。
什么时候会取得gap lock或nextkey lock 这和隔离级别有关,只在REPEATABLE READ或以上的隔离级别下的特定操作才会取得gap lock或nextkey lock
组合八,Repeatable Read隔离级别下的最后一种情况,id列上没有索引。此时SQL:delete from t1 where id = 10; 没有其他的路径可以选择,只能进行全表扫描。最终的加锁情况,如下图所示
如图,这是一个很恐怖的现象。首先,聚簇索引上的所有记录,都被加上了X锁。其次,聚簇索引每条记录间的间隙(GAP),也同时被加上了GAP锁。这个示例表,只有6条记录,一共需要6个记录锁,7个GAP锁。试想,如果表上有1000万条记录呢?
在这种情况下,这个表上,除了不加锁的快照度,其他任何加锁的并发SQL,均不能执行,不能更新,不能删除,不能插入,全表被锁死
结论:在Repeatable Read隔离级别下,如果进行全表扫描的当前读,那么会锁上表中的所有记录,同时会锁上聚簇索引内的所有GAP,杜绝所有的并发 更新/删除/插入 操作。当然,也可以通过触发semi-consistent read,来缓解加锁开销与并发影响,但是semi-consistent read本身也会带来其他问题,不建议使用。
针对前面提到的简单的SQL,最后一个情况:Serializable隔离级别。对于SQL2:delete from t1 where id = 10; 来说,Serializable隔离级别与Repeatable Read隔离级别完全一致,因此不做介绍。
Serializable隔离级别,影响的是SQL1:select * from t1 where id = 10; 这条SQL,在RC,RR隔离级别下,都是快照读,不加锁。但是在Serializable隔离级别,SQL1会加读锁,也就是说快照读不复存在,MVCC并发控制降级为Lock-Based CC。
结论:在MySQL/InnoDB中,所谓的读不加锁,并不适用于所有的情况,而是隔离级别相关的。Serializable隔离级别,读不加锁就不再成立,所有的读操作,都是当前读。
写到这里,其实MySQL的加锁实现也已经介绍的八八九九。只要将本文上面的分析思路,大部分的SQL,都能分析出其会加哪些锁。而这里,再来看一个稍微复杂点的SQL,用于说明MySQL加锁的另外一个逻辑。SQL用例如下:
如图中的SQL,会加什么锁?假定在Repeatable Read隔离级别下 (Read Committed隔离级别下的加锁情况,留给读者分析。),同时,假设SQL走的是idx_t1_pu索引。
在详细分析这条SQL的加锁情况前,还需要有一个知识储备,那就是一个SQL中的where条件如何拆分?具体的介绍,建议阅读我之前的一篇文章:SQL中的where条件,在数据库中提取与应用浅析 。在这里,我直接给出分析后的结果:
Index Filter:userid = ‘hdc’ 。此条件,可以在idx_t1_pu索引上进行过滤,但不属于Index Key。
Table Filter:comment is not NULL。此条件,在idx_t1_pu索引上无法过滤,只能在聚簇索引上过滤。
在分析出SQL where条件的构成之后,再来看看这条SQL的加锁情况 (RR隔离级别),如下图所示:
从图中可以看出,在Repeatable Read隔离级别下,由Index Key所确定的范围,被加上了GAP锁;Index Filter锁给定的条件 (userid = ‘hdc’)何时过滤,视MySQL的版本而定,在MySQL 5.6版本之前,不支持Index Condition Pushdown(ICP),因此Index Filter在MySQL Server层过滤,在5.6后支持了Index Condition Pushdown,则在index上过滤。若不支持ICP,不满足Index Filter的记录,也需要加上记录X锁,若支持ICP,则不满足Index Filter的记录,无需加记录X锁 (图中,用红色箭头标出的X锁,是否要加,视是否支持ICP而定);而Table Filter对应的过滤条件,则在聚簇索引中读取后,在MySQL Server层面过滤,因此聚簇索引上也需要X锁。最后,选取出了一条满足条件的记录[8,hdc,d,5,good],但是加锁的数量,要远远大于满足条件的记录数量
结论:在Repeatable Read隔离级别下,针对一个复杂的SQL,首先需要提取其where条件。Index Key确定的范围,需要加上GAP锁;Index Filter过滤条件,视MySQL版本是否支持ICP,若支持ICP,则不满足Index Filter的记录,不加X锁,否则需要X锁;Table Filter过滤条件,无论是否满足,都需要加X锁。
本文前面的部分,基本上已经涵盖了MySQL/InnoDB所有的加锁规则。深入理解MySQL如何加锁,有两个比较重要的作用:
可以根据MySQL的加锁规则,写出不会发生死锁的SQL;
可以根据MySQL的加锁规则,定位出线上产生死锁的原因;
下面,来看看两个死锁的例子 (一个是两个Session的两条SQL产生死锁;另一个是两个Session的一条SQL,产生死锁)
上面的两个死锁用例。第一个非常好理解,也是最常见的死锁,每个事务执行两条SQL,分别持有了一把锁,然后加另一把锁,产生死锁。
第二个用例,虽然每个Session都只有一条语句,仍旧会产生死锁。要分析这个死锁,首先必须用到本文前面提到的MySQL加锁的规则。针对Session 1,从name索引出发,读到的[hdc, 1],[hdc, 6]均满足条件,不仅会加name索引上的记录X锁,而且会加聚簇索引上的记录X锁,加锁顺序为先[1,hdc,100],后[6,hdc,10]。而Session 2,从pubtime索引出发,[10,6],[100,1]均满足过滤条件,同样也会加聚簇索引上的记录X锁,加锁顺序为[6,hdc,10],后[1,hdc,100]。发现没有,跟Session 1的加锁顺序正好相反,如果两个Session恰好都持有了第一把锁,请求加第二把锁,死锁就发生了。
结论:死锁的发生与否,并不在于事务中有多少条SQL语句,死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。而使用本文上面提到的,分析MySQL每条SQL语句的加锁规则,分析出每条语句的加锁顺序,然后检查多个并发SQL间是否存在以相反的顺序加锁的情况,就可以分析出各种潜在的死锁情况,也可以分析出线上死锁发生的原因。
MySQL 如何保证复制过程中数据一致性