详解:yolov5中推理时置信度,设置的conf和iou_thres具体含义

一、模型输出解析:

        设输出图片大小为1280,768,类别个数为2,则yolov5输出的三种特征图,其维度分别为:[1,3,96,160,7],[1,3,48,80,7],[1,3,24,40,7];相当于yolov5模型总共输出(96*160+48*80+24*40)*3=60480个目标框;

        其中,[1,3,96,160,7] 中1指代输入图像个数为1,3指的是该尺度下的3种anchor,(96,160)  指的是特征图的尺寸,7具体指的是:(center_x,center_y, width, height, obj_conf, class_1_prob, class_2_prob ),即分别为box框中心点x,y,长和宽 width,height,以及该框存在目标的置信度obj_conf,类别1和类别2 的置信度,若class_1_prob > class_2_prob,则该框的类别为class1;因此,obj_conf和class_1_prob一个指得是该框存在目标的概率,一个指是该框分类为类别1的概率;

二、yolov5后处理解析;

        从一可知模型输出了60480个目标框,因此,要经过NMS进行过滤,进NMS之前需要经过初筛(即将obj_conf小于我们设置的置信度的框去除),再计算每个box框的综合置信度conf:conf = obj_conf * max(class_1_prob ,class_2_prob),此时的conf是综合了obj_conf以及class_prob的综合概率;再经过进一步的过滤(即将conf小于我们设置的置信度的框去除),最后,将剩余的框通过NMS算法,得出最终的框;(NMS中用到了我们设置的iou_thres);

        因此,最终我们可视化在box上方的置信度是综合了obj_conf以及class_prob的综合概率;

        以下是yolov5中NMS源码,可查看细节:

def non_max_suppression(prediction,
                        conf_thres=0.25,
                        iou_thres=0.45,
                        classes=None,
                        agnostic=False,
                        multi_label=False,
                        labels=(),
                        max_det=300):
    """Non-Maximum Suppression (NMS) on inference results to reject overlapping bounding boxes
    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """

    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[2] - 5  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Checks
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    max_wh = 7680  # (pixels) maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 0.3 + 0.03 * bs  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    output = [torch.zeros((0, 6), device=prediction.device)] * bs
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + 5), device=x.device)
            v[:, :4] = lb[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        box = xywh2xyxy(x[:, :4])

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
        else:  # best class only
            conf, j = x[:, 5:].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        elif n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        if i.shape[0] > max_det:  # limit detections
            i = i[:max_det]
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            LOGGER.warning(f'WARNING: NMS time limit {time_limit:.3f}s exceeded')
            break  # time limit exceeded

    return output

你可能感兴趣的:(算法研读,目标检测,深度学习,人工智能)