- 基于GPT一键完成数据分析全流程的AI Agent: Streamline Analyst
Wilson_ZheLIN
gpt4aiagentllms数据分析
大型语言模型(LLM)的兴起不仅为获取知识和解决问题开辟了新的可能性,而且催生了一些新型智能系统,例如旨在辅助用户完成特定任务的AICopilot以及旨在自动化和自主执行复杂任务的AIAgent,使得编程、创作等任务变得高效而条理。在数据科学和可视化方面,非常多家AICopilot通过提供智能提示、建议或辅助决策等手段有效减小了用户的工作量。但是很少有app针对不同种类数据的预处理、建模、可视化等
- ANR小记
knookda
安卓android
anr的分类当前的事件没有机会得到处理(即主线程正在处理前一个事件,没有及时的完成或者looper被某种原因阻塞住了)。当前的事件正在处理,但没有及时完成.ANR的全称是ApplicationNoResponding,即应用程序无响应,具体是一些特定的Message(KeyDispatch、Broadcast、Service)在应用的UI线程(主线程)没有在规定的时间内处理完,进而触发ANR异常。
- 什么是神经网络
jerryjee
神经网络与深度学习神经网络深度学习机器学习人工智能python
概述简而言之,神经网络就是函数:输入数据,输出结果。函数我们以MNIST手写数字图像识别为例,来定义一下对应的函数形式:任务类型:图像分类输入:一张图像包含28x28=784个像素,每个像素用一个实数表示输出:0-9任务描述:从图像张识别出唯一的数字函数定义y=f(x1,x2,...,x784)y=f(x_1,x_2,...,x_{784})y=f(x1,x2,...,x784)xi∈R,i=1,
- 【SQL】SQL多表查询
天生爱打工
SQLsql数据库
概念一般我们说的多表查询都涉及外键和父子表之间的关系。比如一对多:一般前面指的是父表后面指的是子表。⭐分类一对多(多对一)多对多一对一⭐一对多案例:部门与员工的关系关系:一个部门对应多个员工,一个员工对应一个部门实现:在多的一方建立外键,指向一的一方的主键(例如上一章节的SQL约束示例)⭐多对多案例:学生与课程的关系关系:一个学生可以选修多门课程,一门课程也可以供多个学生选择实现:建立第三张中间表
- 高效知识管理与分类优化指南:从目录设计到实践应用
思考在马桶上
笔记经验分享其他生活学习方法程序人生职场和发展
摘要本文旨在帮助读者在信息爆炸时代构建高效的知识管理体系,提供了知识收藏目录、浏览器书签和电脑文件夹的优化分类方案。知识收藏目录方案包括工作与项目、记录与日常、知识管理等八大类,具有边界清晰、扩展灵活、贴合实际场景等优势。浏览器书签分类方案注重高频工具置顶、设置临时缓冲区和标签辅助管理。电脑文件夹分类方案按角色划分,实行项目制管理,通用层级不超过三层。文章还给出了使用建议,并展望了未来结合AI助手
- DeepSeek 的创新融合:多行业应用实践探索
♡喜欢做梦
人工智能deepseek
引言在数字化转型的浪潮中,技术的融合与创新成为推动各行业发展的关键力量。蓝耘平台作为行业内备受瞩目的创新平台,以其强大的资源整合能力和灵活的架构,为企业提供了高效的服务支持。而DeepSeek凭借先进的人工智能技术,在自然语言处理、数据分析等领域展现出卓越的性能。当蓝耘平台与DeepSeek携手,二者的优势互补为多行业解决方案带来了全新的应用实践方向,为企业解决复杂业务问题、提升运营效率提供了强大
- NoSQL数据库介绍与分类
码农老起
nosql数据库
目录一.NoSQL数据库的定义及其特点二.NoSQL的四种主要类型2.1文档型数据库(Document-BasedDatabase)2.2键值型数据库(Key-ValueStore)2.3列族型数据库(Column-FamilyStore)2.4图数据库(GraphDatabase)三.主要的NoSQL数据库3.1MongoDB3.2Redis3.3Cassandra3.4Neo4j四.使用NoS
- 深入解析 NoSQL 数据库的分类与特点
一休哥助手
数据库数据库nosql
目录NoSQL数据库概述NoSQL数据库的主要分类2.1键值存储2.2文档存储2.3列族存储2.4图数据库NoSQL数据库的特点
- 打造十六进制文本编辑器:从基础到高级功能
无形小手
本文还有配套的精品资源,点击获取简介:十六进制文本编辑器是一种用于查看和编辑文件原始二进制数据的工具,它在编程调试和数据分析中尤其有用。这类编辑器提供对CEdit控件的子类化支持,可以处理十六进制字符输入,并自动添加空格以提高可读性。通过子类化CEdit,开发者能够定制标准文本编辑器的行为,实现对输入的限制和自动格式化功能。本项目的实现需要深入了解WindowsAPI、MFC以及二进制数据处理,并
- 使用OpenAI LLM与Neo4j数据库进行自然语言交互
bBADAS
neo4j数据库交互python
技术背景介绍在现代数据分析和应用开发中,图数据库以其独特的强大功能越来越受到重视。其中,Neo4j是最受欢迎的图数据库之一。结合自然语言处理(NLP),可以使数据查询变得更加直观和便捷。本篇文章将介绍如何使用OpenAI的语言模型将自然语言问题转换成Cypher查询,并通过Neo4j数据库执行该查询,并给出自然语言的响应。核心原理解析我们的目标是实现一个系统,该系统能够接受自然语言输入,将其转换为
- 机器学习基本篇
胖胖的小肥猫
机器学习
1基本概念机器学习,分为回归,分类,聚类,降维有监督学习回归,分类,有特征,有标签,进行训练,然后对新数据进行预测无监督学习聚类,降维。题目越多,训练越好,2基本流程数据预处理——模型训练与评估可以优化为获取数据——数据预处理——EDA分析——特征工程——模型训练——可解释性分析2.0数据获取利用kaggle,天池等平台的开源数据,2.1预处理目的:让数据更符合逻辑让数据更容易计算借助函数实现变换
- 设计模式--迭代器模式【行为型模式】
码农爱java
设计模式设计模式迭代器模式23种设计模式面试Java原理
设计模式的分类我们都知道有23种设计模式,这23种设计模式可分为如下三类:创建型模式(5种):单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。设
- 设计模式--观察者模式【行为型模式】
码农爱java
设计模式设计模式观察者模式23种设计模式面试Java
设计模式的分类我们都知道有23种设计模式,这23种设计模式可分为如下三类:创建型模式(5种):单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。设
- 设计模式--策略模式【行为型模式】
码农爱java
设计模式设计模式策略模式23种设计模式面试原理Java
设计模式的分类我们都知道有23种设计模式,这23种设计模式可分为如下三类:创建型模式(5种):单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。设
- 设计模式--桥接模式【结构型模式】
码农爱java
设计模式桥接模式23种设计模式面试原理Java
设计模式的分类我们都知道有23种设计模式,这23种设计模式可分为如下三类:创建型模式(5种):单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。设
- 设计模式--组合模式【结构型模式】
码农爱java
设计模式设计模式组合模式23种设计模式面试原理Java
设计模式的分类我们都知道有23种设计模式,这23种设计模式可分为如下三类:创建型模式(5种):单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。设
- 设计模式--原型模式【创建型模式】
码农爱java
设计模式设计模式原型模式23种设计模式Java原理面试
设计模式的分类我们都知道有23种设计模式,这23种设计模式可分为如下三类:创建型模式(5种):单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。设
- 设计模式--抽象工厂模式【创建型模式】
码农爱java
设计模式设计模式抽象工厂模式原理面试23种设计模式JavaJava设计模式
设计模式的分类我们都知道有23种设计模式,这23种设计模式可分为如下三类:创建型模式(5种):单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。结构型模式(7种):适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。设
- 解锁机器学习核心算法 | 支持向量机:机器学习中的分类利刃
紫雾凌寒
AI炼金厂机器学习算法支持向量机python深度学习分类人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、降维算法、梯度增强算法。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这十大算法中,支持向量机(Suppor
- PCB加工常用高频板材(厂家)与型号介绍表
Turbulence_NB
材料工程射频工程pcb工艺制造5G
品牌分类品牌名称高频板系列材料构成进口品牌罗杰斯AD系列聚四氟乙烯-陶瓷-玻璃纤维布增强基板进口品牌罗杰斯RO4000系列碳氢树脂-陶瓷-玻璃纤维布复合材料基板进口品牌罗杰斯RO3000系列聚四氟乙烯-陶瓷复合基板,极低损耗,无玻纤材料进口品牌罗杰斯TMM系列碳氢树脂-陶瓷-随机玻纤增强复合材料进口品牌罗杰斯RT/Duroid5000系列聚四氟乙烯-随机玻纤增强复合基板,毫米波专用进口品牌AGC集
- 深度学习与图像识别:机器学习基础之回归
Shenrn_
机器学习回归深度学习
1.线性回归1.1一元线性回归1.2多元线性回归2.逻辑回归与线性回归的不同在于其将最终预测值y固定在一个范围之中2.1Sigmoid函数sigmoid函数表达式:p为预测出来的概率,范围在0-1之间,一般用于处理二分类问题,因为这个式子的一个显著特征在于:当z=0,p=0.5当z>0,p>0.5当z<0,p<0.5所以当对z进行多元线性回归表示的时候,以p的值来反映y_pre是一个不错的选择,此
- 机器学习和线性回归、softmax回归
小名叫咸菜
人工智能线性回归
监督学习监督学习(supervisedlearning)擅⻓在“给定输⼊特征”的情况下预测标签。每个“特征-标签”对都称为一个样本(example)。我们的目标是生成一个模型,能够将任何输⼊特征映射到标签(即预测)。回归——平方误差损失函数回归(regression)是最简单的监督学习任务之一。分类——交叉熵样本属于“哪一类”的问题称为分类问题回归是训练一个回归函数来输出一个数值;分类是训练一个分
- 2024山东省职业院校技能大赛“网络空间安全”赛题及赛题解析(超详细)_2024年山东省职业院校技能大赛中职组网络安全赛项竞赛样题(2)
2401_84252820
程序员安全web安全
如何自学黑客&网络安全黑客零基础入门学习路线&规划初级黑客1、网络安全理论知识(2天)①了解行业相关背景,前景,确定发展方向。②学习网络安全相关法律法规。③网络安全运营的概念。④等保简介、等保规定、流程和规范。(非常重要)2、渗透测试基础(一周)①渗透测试的流程、分类、标准②信息收集技术:主动/被动信息搜集、Nmap工具、GoogleHacking③漏洞扫描、漏洞利用、原理,利用方法、工具(MSF
- LSTM-SVM故障诊断 | 基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现
机器学习之心
分类预测神经网络lstm支持向量机LSTM-SVM故障诊断
LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现完整代码私信回复LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现一、引言1.1、研究背景和意义在现代工业生产中,机械设备的高效稳定运行对保障生产安全和提高生产效率至关重要。因此,故障诊断技术作为预防和维护设备性能的关键手段,受到了广泛关注和
- 【工具】飞书个人知识库搭建(附详细步骤)
L-ololois
飞书
文章目录一、前言二、准备工作1.注册飞书账号2.熟悉飞书界面三、搭建步骤1.创建知识库根目录2.分类规划3.文档创建与整理4.标签与搜索功能利用四、知识库维护1.定期更新2.内容优化五、安全与备份1.权限管理2.备份策略六、具体步骤一、前言飞书提供了一个便捷的平台来搭建个人知识库,有丰富强大的功能,比如在线文档、表格、问卷及在线画图、画思维导图,还可以存放文件。方便我们整理思绪、存储资料并提高工作
- 探秘 DeepSeek R1 模型:跨越多领域的科技奇迹,引领智能应用新浪潮
羑悻的小杀马特.
AI学习科技deepseekAI大模型
DeepSeekR1模型功能强大,应用广泛。在自然语言处理、计算机视觉、推荐系统和医疗等领域都能发挥作用。本文介绍了其在各领域的应用场景和代码示例,助你深入了解它。目录编辑一、本篇背景:二、DeepSeekR1模型概述:2.1模型特点:2.2技术原理:三、自然语言处理领域的应用:3.1文本分类:3.1.1应用场景:3.1.2代码演示:3.2情感分析:3.2.1应用场景:3.2.2代码演示:3.3机
- DeepSeek —— 金融市场中的AI颠覆者 !!!
云边有个稻草人
热门文章人工智能金融大数据DeepSeek
目录云边有个稻草人-CSDN博客引言第1章:DeepSeek的技术概述第2章:DeepSeek对金融行业的影响2.1自动化与决策支持2.2风险评估与管理2.3金融市场预测2.4高频交易与量化分析第3章:展示如何利用DeepSeek进行不同的金融数据分析3.1市场情绪分析3.2新闻事件对股票价格的影响3.3使用DeepSeek进行量化策略回测3.4使用DeepSeek进行投资组合优化第4章:金融界专
- 【产品经理修炼之道】-企业级SaaS架构实战(2):架构视图与视角
xiaoli8748_软件开发
产品经理产品经理架构
企业级的SaaS系统涉及的利益干系人众多,那么该如何将其做好分类,便于快速获取相应信息?本文将介绍SaaS架构视图与视角,便于你了解相关内容,更好展开工作。把企业级SaaS系统架构描述清楚,是一项极其复杂的工作。因为企业级SaaS系统涉及的利益干系人众多,例如:客户、产品经理、研发、销售、运营、管理层等等。由于背景不同,认知不同,每个人看待它的角度、方法都各不相同。为了控制复杂度,我们需要设计一整
- QT5在windows下调用OpenCV库出现: undefined reference to `xxxxx' 错误解决办法(适用MinGW编译器)。
DS小龙哥
QT(C++)应用软件开发AI人工智能opencv
一、环境介绍window系统:win10X64QT版本:5.12QT5.12自带的MinGW编译器版本:mingw730_32与mingw730_64在QT的安装目录下,可以查看MinGW编译器的版本:二、使用OpenCV出现的问题在QT框架代码里使用老版本的分类器(cvLoad、cvHaarDetectObjects)处理图像时,正常编译没有问题,当使用新版本级联分类器(CascadeClass
- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。