完善后的根据深度图加雾代码Python

完善后的根据深度图加雾代码Python_第1张图片

 

前言:

以下代码根据实验需要进一步了修改,尚有不完善之处,多多指教!

由于本人需要,代码中有加噪步骤,可以自行去除。加噪方式参考论文:bringing old photos back to life

其中包含数据集reside中加雾算法的个人实现,可能存在错误或不足,如有请劳烦联系告诉我,可以留言或者加本人联系方式(代码中有)==!

原理:

不赘述,如下。

 大气模型:

其中

I为雾化图像,J为原图,t为转移矩阵,A为大气光,d为深度矩阵

代码:

#coding:utf-8
# import cv2
# import os
# import glob
# import cv2, math
# import numpy as np

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

# import os.path
# import io
# import zipfile
#
# import torchvision.transforms as transforms
#author WeChat:Alocus
#author QQ:1913434222
#source:https://mp.csdn.net/mp_blog/creation/editor/121520268


from io import BytesIO
import os
import glob
import cv2, math
import random
import numpy as np
# import h5py
import os
from PIL import Image
import scipy.io

def pil_to_np(img_PIL):
    '''Converts image in PIL format to np.array.

    From W x H x C [0...255] to C x W x H [0..1]
    '''
    ar = np.array(img_PIL)

    if len(ar.shape) == 3:
        ar = ar.transpose(2, 0, 1)
    else:
        ar = ar[None, ...]

    return ar.astype(np.float32) / 255.


def np_to_pil(img_np):
    '''Converts image in np.array format to PIL image.

    From C x W x H [0..1] to  W x H x C [0...255]
    '''
    ar = np.clip(img_np * 255, 0, 255).astype(np.uint8)

    if img_np.shape[0] == 1:
        ar = ar[0]
    else:
        ar = ar.transpose(1, 2, 0)

    return Image.fromarray(ar)

def synthesize_salt_pepper(image,amount,salt_vs_pepper):

    ## Give PIL, return the noisy PIL

    img_pil=pil_to_np(image)

    out = img_pil.copy()
    p = amount
    q = salt_vs_pepper
    flipped = np.random.choice([True, False], size=img_pil.shape,
                               p=[p, 1 - p])
    salted = np.random.choice([True, False], size=img_pil.shape,
                              p=[q, 1 - q])
    peppered = ~salted
    out[flipped & salted] = 1
    out[flipped & peppered] = 0.
    noisy = np.clip(out, 0, 1).astype(np.float32)


    return np_to_pil(noisy)

def synthesize_gaussian(image,std_l,std_r):

    ## Give PIL, return the noisy PIL

    img_pil=pil_to_np(image)

    mean=0
    std=random.uniform(std_l/255.,std_r/255.)
    gauss=np.random.normal(loc=mean,scale=std,size=img_pil.shape)
    noisy=img_pil+gauss
    noisy=np.clip(noisy,0,1).astype(np.float32)

    return np_to_pil(noisy)

def synthesize_speckle(image,std_l,std_r):

    ## Give PIL, return the noisy PIL

    img_pil=pil_to_np(image)

    mean=0
    std=random.uniform(std_l/255.,std_r/255.)
    gauss=np.random.normal(loc=mean,scale=std,size=img_pil.shape)
    noisy=img_pil+gauss*img_pil
    noisy=np.clip(noisy,0,1).astype(np.float32)

    return np_to_pil(noisy)


def synthesize_low_resolution(img):
    w,h=img.size

    new_w=random.randint(int(w/2),w)
    new_h=random.randint(int(h/2),h)

    img=img.resize((new_w,new_h),Image.BICUBIC)

    if random.uniform(0,1)<0.5:
        img=img.resize((w,h),Image.NEAREST)
    else:
        img = img.resize((w, h), Image.BILINEAR)

    return img



def convertToJpeg(im,quality):
    with BytesIO() as f:
        im.save(f, format='JPEG',quality=quality)
        f.seek(0)
        return Image.open(f).convert('RGB')


def blur_image_v2(img):


    x=np.array(img)
    kernel_size_candidate=[(3,3),(5,5),(7,7)]
    kernel_size=random.sample(kernel_size_candidate,1)[0]
    std=random.uniform(1.,5.)

    #print("The gaussian kernel size: (%d,%d) std: %.2f"%(kernel_size[0],kernel_size[1],std))
    blur=cv2.GaussianBlur(x,kernel_size,std)

    return Image.fromarray(blur.astype(np.uint8))


def srgb2lrgb(I0):
    gamma = ((I0 + 0.055) / 1.055)**2.4
    scale = I0 / 12.92
    return np.where (I0 > 0.04045, gamma, scale)

def lrgb2srgb(I1):
    gamma =  1.055*I1**(1/2.4)-0.055
    scale = I1 * 12.92
    return np.where (I1 > 0.0031308, gamma, scale)

def hazy_simu(img_name,depth_or_trans_name,airlight=0.76,is_imdepth=1): ##for outdoor
    """
    This is the function for haze simulation with the parameters given by
    the paper:
    HAZERD: an outdoor scene dataset and benchmark for single image dehazing
    IEEE Internation Conference on Image Processing, Sep 2017
    The paper and additional information on the project are available at:
    https://labsites.rochester.edu/gsharma/research/computer-vision/hazerd/
    If you use this code, please cite our paper.

    IMPORTANT NOTE: The code uses the convention that pixel locations with a
    depth value of 0 correspond to objects that are very far and for the
    simulation of haze these are placed a distance of 2 times the visual
    range.

    Authors:
    Yanfu Zhang: [email protected]
    Li Ding: [email protected]
    Gaurav Sharma: [email protected]

    Last update: May 2017

    python version update : Aug 2021
    Authors :
    Haoying Sun : [email protected]

    parse inputs and set default values
    Set default parameter values. Some of these are used only if they are not
    passed in

    :param img_name: the directory and name of a haze-free RGB image, the name
                     should be in the format of ..._RGB.jpg
    :param depth_name: the corresponding directory and name of the depth map, in
                     .mat file, the name should be in the format of ..._depth.mat
    :param save_dir: the directory to save the simulated images
    :param pert_perlin: 1 for adding perlin noise, default 0
    :param airlight:  3*1 matrix in the range [0,1]
    :param visual_range: a vector of any size
    :return: image name of hazy image
    """
    # if random.uniform(0, 1) < 0.5:
    visual_range = [0.05, 0.1, 0.2, 0.5, 1]  #  visual range in km #可自行调整,或者使用range函数设置区间,此时需要修改beta_param,尚未研究
    beta_param = 3.912     #Default beta parameter corresponding to visual range of 1000m

    A = airlight
    #print('Simulating hazy image for:{}'.format(img_name))
    VR = random.choice(visual_range)

    #print('Viusal value: {} km'.format(VR) )
    #im1 = cv2.imread(img_name)
    img_pil = pil_to_np(img_name)

    #convert sRGB to linear RGB
    I = srgb2lrgb(img_pil)

    if is_imdepth:
        depths = depth_or_trans_name

        d = depths/1000   # convert meter to kilometer
        if depths.max()==0:
            d = np.where(d == 0,0.01, d) ####
        else:
            d = np.where(d==0,2*VR,d)
        #Set regions where depth value is set to 0 to indicate no valid depth to
        #a distance of two times the visual range. These regions typically
        #correspond to sky areas

        #convert depth map to transmission
        beta = beta_param / VR
        beta_return = beta
        beta = np.ones(d.shape) * beta
        transmission = np.exp((-beta*d))
        transmission_3 = np.array([transmission,transmission,transmission])

        #Obtain simulated linear RGB hazy image.Eq. 3 in the HazeRD paper
        Ic = transmission_3 * I + (1 - transmission_3) * A
    else:
        Ic = pil_to_np(depth_or_trans_name) * I + (1 - pil_to_np(depth_or_trans_name)) * A

    # convert linear RGB to sRGB
    I2 = lrgb2srgb(Ic)
    haze_img = np_to_pil(I2)
    # haze_img = np.asarray(haze_img)
    # haze_img = cv2.cvtColor(haze_img, cv2.COLOR_RGB2BGR)
    # haze_img = Image.fromarray(haze_img)
    return haze_img,airlight,beta_return

def hazy_reside_training(img_name,depth_or_trans_name,is_imdepth=1):
    """
    RESIDE的 training中:A :(0.7, 1.0) ,   beta:(0.6, 1.8)
    :param img_name:
    :param depth_or_trans_name:
    :param pert_perlin:
    :param is_imdepth:
    :return:
    """
    beta = random.uniform(0.6, 1.8)
    beta_return = beta
    airlight = random.uniform(0.7, 1.0)

    A = airlight

    #print('Viusal value: {} km'.format(VR) )
    #im1 = cv2.imread(img_name)
    img_pil = pil_to_np(img_name)

    #convert sRGB to linear RGB
    I = srgb2lrgb(img_pil)

    if is_imdepth:
        depths = depth_or_trans_name

        #convert depth map to transmission
        if depths.max()==0:
            d = np.where(depths == 0,1, depths)

        else:
            d = depths / depths.max()
            d = np.where(d == 0, 1, d)
        beta = np.ones(d.shape) * beta
        transmission = np.exp((-beta*d))
        transmission_3 = np.array([transmission,transmission,transmission])

        #Obtain simulated linear RGB hazy image.Eq. 3 in the HazeRD paper
        Ic = transmission_3 * I + (1 - transmission_3) * A

    else:
        Ic = pil_to_np(depth_or_trans_name) * I + (1 - pil_to_np(depth_or_trans_name)) * A

    # convert linear RGB to sRGB
    I2 = lrgb2srgb(Ic)
    #I2 = cv2.cvtColor(I2, cv2.COLOR_BGR2RGB)

    haze_img = np_to_pil(I2)
    # haze_img = np.asarray(haze_img)
    # haze_img = cv2.cvtColor(haze_img, cv2.COLOR_RGB2BGR)
    # haze_img = Image.fromarray(haze_img)
    return haze_img,airlight,beta_return

def hazy_reside_OTS(img_name,depth_or_trans_name,is_imdepth=1):
    """
    RESIDE的 OTS中:A [0.8, 0.85, 0.9, 0.95, 1] ,   beta:[0.04, 0.06, 0.08, 0.1, 0.12, 0.16, 0.2]
    :param img_name:
    :param depth_or_trans_name:
    :param pert_perlin:
    :param is_imdepth:
    :return:
    """
    beta = random.choice([0.04, 0.06, 0.08, 0.1, 0.12, 0.16, 0.2])
    beta_return = beta
    airlight = random.choice([0.8, 0.85, 0.9, 0.95, 1])
    #print(beta)
    #print(airlight)
    A = airlight

    #print('Viusal value: {} km'.format(VR) )
    #im1 = cv2.imread(img_name)

    #img = cv2.cvtColor(np.asarray(img_name), cv2.COLOR_RGB2BGR)
    img_pil = pil_to_np(img_name)

    #convert sRGB to linear RGB
    I = srgb2lrgb(img_pil)

    if is_imdepth:
        depths = depth_or_trans_name
        #convert depth map to transmission
        if depths.max()==0:
                d = np.where(depths == 0, 1, depths)
        else:
            d = depths/(depths.max())
            d = np.where(d == 0, 1, d)
        # #深度图可视化
        # dd = (depth_or_trans_name-depth_or_trans_name.min())/(depth_or_trans_name.max()-depth_or_trans_name.min())
        # Image.fromarray(dd * 255).show()
        beta = np.ones(d.shape) * beta
        transmission = np.exp((-beta*d))

        # #透射图可视化
        # transmission1 = (transmission-transmission.min())/(transmission.max()-transmission.min())#np.std
        # Image.fromarray(transmission1*255).show()

        transmission_3 = np.array([transmission,transmission,transmission])

        #Obtain simulated linear RGB hazy image.Eq. 3 in the HazeRD paper
        Ic = transmission_3 * I + (1 - transmission_3) * A

    else:
        Ic = pil_to_np(depth_or_trans_name) * I + (1 - pil_to_np(depth_or_trans_name)) * A

    # convert linear RGB to sRGB
    I2 = lrgb2srgb(Ic)
    haze_img = np_to_pil(I2)

    #haze_img = np.asarray(haze_img)
    #haze_img = cv2.cvtColor(haze_img, cv2.COLOR_RGB2BGR)
    #haze_img = Image.fromarray(haze_img)
    return haze_img,airlight,beta_return
def online_add_degradation_v2(img,depth_or_trans):
    noise = 0
    task_id=np.random.permutation(4)
    if random.uniform(0,1)<0.3:
        noise = 1
        #print('noise')
        for x in task_id:
            #为增加更多变化,随机进行30%的丢弃,即<0.7
            if x==0 and random.uniform(0,1)<0.7:
                img = blur_image_v2(img)
            if x==1 and random.uniform(0,1)<0.7:
                flag = random.choice([1, 2, 3])
                if flag == 1:
                    img = synthesize_gaussian(img, 5, 50) # Gaussian white noise with σ ∈ [5,50]
                if flag == 2:
                    img = synthesize_speckle(img, 5, 50)
                if flag == 3:
                    img = synthesize_salt_pepper(img, random.uniform(0, 0.01), random.uniform(0.3, 0.8))
            if x==2 and random.uniform(0,1)<0.7:
                img=synthesize_low_resolution(img)

            if x==3 and random.uniform(0,1)<0.7:
                img=convertToJpeg(img,random.randint(40,100))
                #JPEG compression whose level is in the range of [40,100]
    #img.show('noise')
    add_haze = random.choice([1,2,3])
    if add_haze == 1:
        img, airlight, beta  = hazy_reside_OTS(img, depth_or_trans)
    elif add_haze  == 2:
        img, airlight, beta  = hazy_simu(img, depth_or_trans)
    else:
        img, airlight, beta  = hazy_reside_training(img, depth_or_trans)
    # else:
    #     if add_haze < 0.1:
    #         img = hazy_reside_OTS(img, depth_or_trans)
    #     elif add_haze > 0.1 and add_haze < 0.2:
    #         img = hazy_simu(img, depth_or_trans)
    #     else:
    #         img = hazy_reside_training(img, depth_or_trans)
    return img,noise,airlight,beta



path1 = r'J:\dataset\GT\1449.png'
path2 = r'J:\dataset\npy\1449.npy'
path3 = r'C:\Users\Administrator\Desktop'
# for i in range(1400,1450):
#     path11 = os.path.join(path1,str(i) + '.png')
#     path22 = os.path.join(path2, str(i) + '.npy')
#     npy = np.load(path22)
#
#     img =  Image.open(path11)
#     for j in range(1,11):
#         #hazy_simu  hazy_reside_training  hazy_reside_OTS
#         img_haze,noise,airlight,beta_return = online_add_degradation_v2(img,npy)
#         airlight = round(airlight, 2)
#         beta_return = round(beta_return, 2)
#
#         #Image.Image.show(img)
#         path_save =os.path.join(path3,str(i) + '_' + str(j) + '_'+ str(noise) + '_'+ str(airlight) + '_' + str(beta_return)+ '.png')
#         img_haze.save(path_save)


npy = np.load(path2)
img =  Image.open(path1)
for j in range(1,11):
    #hazy_simu  hazy_reside_training  hazy_reside_OTS
    img_haze,airlight,noise,beta_return = hazy_reside_OTS(img,npy)
    airlight = round(airlight, 2)
    beta_return = round(beta_return, 2)

    #Image.Image.show(img)
    path_save =os.path.join(path3,str(j) + '_' + str(j) + '_'+str(noise)+ '_'+ str(airlight) + '_' + str(beta_return)+ '.png')
    img_haze.save(path_save)

结果:

原图:

完善后的根据深度图加雾代码Python_第2张图片

无噪声

完善后的根据深度图加雾代码Python_第3张图片

有噪声

完善后的根据深度图加雾代码Python_第4张图片

深度图:(需要设置显示色彩)

 完善后的根据深度图加雾代码Python_第5张图片

透射图:

完善后的根据深度图加雾代码Python_第6张图片

注意,其中npy文件为利用numpy库将深度信息转为npy类型文件,其实质就是矩阵。另外,我在代码中加入了一些可视化,如深度图,透射图等,如果需要的话可以取消注释。

另外,我所用的数据集为NYUv2,深度矩阵npy文件为从中提取,网上应该有或者从官方网站中自行提取。如有需要,可联系本人,联系方式在代码中。

更新,数据集下载地址:

链接:https://pan.baidu.com/s/1ZaQMPfXlD6CCgSWXxutSsA?pwd=jqu0 
提取码:jqu0

只可用作学习交流,请勿转载,完善后的根据深度图加雾代码Python_Alocus的博客-CSDN博客

你可能感兴趣的:(python,#,图像去雾加雾,python,深度学习,人工智能)