✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
个人主页:Matlab科研工作室
个人信条:格物致知。
更多Matlab仿真内容点击
智能优化算法 神经网络预测 雷达通信 无线传感器
信号处理 图像处理 路径规划 元胞自动机 无人机
"双碳"背景下,为提高能源利用率,优化设备的运行灵活性,进一步降低综合能源系统(IES)的碳排放水平,提出一种IES低碳经济运行策略.首先考虑IES参与到碳交易市场,引入阶梯式碳交易机制引导IES控制碳排放;接着细化电转气(P2G)的两阶段运行过程,引入电解槽、甲烷反应器、氢燃料电池(HFC)替换传统的P2G,研究氢能的多方面效益;最后提出热电比可调的热电联产、HFC运行策略,进一步提高IES的低碳性与经济性.基于此,构建以购能成本、碳排放成本、弃风成本最小的低碳经济运行目标,将原问题转化为混合整数线性问题,运用CPLEX商业求解器进行求解,通过设置多个运行情景,对比验证了所提策略的有效性.
classdef Cplex < dynamicprops
% Cplex The math programming solver.
% This class stores MP models and provides methods for its solution
% analysis and manipulation.
% Cplex properties:
% Model The Model
% Param The Parameters to solve the Model
% DisplayFunc The display function handle of the Model
% Conflict A dynamic property of the Cplex class that
% represents the Conflict of the model,
% it will be generated after refineConflict.
% If the Model is MIP, refineMipStartConflict can
% generate Conflict as well.
% use cplex.findprop('Conflict').delete to remove
% this property
% InfoCallback A dynamic property, an informational callback is
% a user-written routine that enables your
% application to access
% information about the current mixed integer
% programming (MIP) optimization without sacrificing
% performance and without interfering in the
% search of the solution space.
% use cplex.findprop('InfoCallback').delete to remove
% this property
% Start A dynamic property of the Cplex class that
% represents the Start of the LP or QP model,
% it will be generated after solving.
% It also can be given before
% solving to help CPLEX(R) get a Solution. It is
% optional.
% use cplex.findprop('Start').delete to remove
% this property
% MipStart A dynamic property of the Cplex class that
% represents the MipStart of the MIP model;
% it will be generated after solving
% or populating. It also can be given before
% solving to help CPLEX get a Solution. It is
% optional.
% use cplex.findprop('MipStart').delete to remove
% this property
% Solution A dynamic property of the Cplex class that
% represents the solution of the model,
% it will be generated after solving or feasopting.
% If the Model is MIP, populate can generate
% Solution as well.
% use cplex.findprop('Solution').delete to remove
% this property
% Order A dynamic property of the Cplex class that
% represents the priority order.
% Cplex methods:
% Cplex The constructor for Cplex objects.
% addCols Adds columns to the problem object.
% addIndicators Adds indicator constraints to the specified problem.
% addQCs Adds a quadratic constraint or quadratic
% constraint set to the problem object.
% addRows Adds constraints to the problem object.
% addSOSs Adds information about special ordered sets (SOS)
% to a problem object of type MILP, MIQP, or MIQCP.
% delCols Removes the specified columns from the problem
% object.
% delRows Removes the specified rows from the problem
% object.
% feasOpt Computes a minimum-cost relaxation of the righthand
% side values of constraints or bounds on variables
% in order to make an infeasible problem feasible.
% getChgParam Returns a struct of parameters which are not set at
% their default values.
% getProbType Accesses the problem type.
% getVersion Returns the version of CPLEX.
% populate Generates multiple Solutions to a mixed integer
% programming (MIP) problem.
% readBasis Reads a basis from a BAS file and copies that basis
% into the Start property of the Model.
% readMipStart Reads a MST file and copies the information of all
% the MIP starts contained in this file into the
% problem object.
% readModel Reads a CPLEX Model from a file and copies it into
% the problem object.
% readOrder Reads a priority order file.
% readParam Reads parameter names and settings from the file
% specified by filename and copies them into the
% problem object.
% refineConflict Identifies a minimal conflict for the infeasibility
% of the linear constraints and the variable bounds in
% the current linear problem.
% refineMipStartConflict
% Refines a conflict in order to determine why a
% given MIP start is not feasible in linear
% problem.
% setDefault Resets all CPLEX parameters and settings to default
% values.
% solve Solves the current model in the problem object.
% terminate Interrupts an ongoing solve() method invocation.
% tuneParam Tunes the Parameters of the environment for improved
% optimizer performance on the problem object.
% writeBasis Writes the most current basis associated with the
% problem object to a file.
% writeConflict Writes a conflict file.
% writeMipStart Writes a range of MIP starts of the problem
% object to a file in MST format.
% writeModel Writes the model of the invoking object to a
% file.
% writeOrder Writes a priority order file.
% writeParam Writes the parameter names and their current settings
% into the file specified by name for all the CPLEX
% parameters that are not currently set at their
% default.
%
% See also
% Properties:
% Model, Param, DisplayFunc
% Methods:
% Cplex
% getVersion getProbType getChgParam
% readBasis writeBasis readMipStart writeMipStart
% readModel writeModel writeConflict
% readParam writeParam tuneParam setDefault
% addCols addRows delRows delCols
% addIndicators addQCs addSOSs readOrder
% solve feasOpt populate writeOrder
% refineConflict terminate refineMipStartConflict
% ---------------------------------------------------------------------------
% File: Cplex.m
% ---------------------------------------------------------------------------
% Licensed Materials - Property of IBM
% 5725-A06 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-Y55
% Copyright IBM Corporation 2008, 2011. All Rights Reserved.
%
% US Government Users Restricted Rights - Use, duplication or
% disclosure restricted by GSA ADP Schedule Contract with
% IBM Corp.
% ---------------------------------------------------------------------------
properties
% Model The Model used by the math programming solver.
% Model fields:
% name String Name of the Model.
% sense String that specifies whether the problem is a
% minimization or maximization problem.
% obj Double column vector
% representing objective function coefficients.
% lb Double column vector
% representing lower bound on each of the variables.
% ub Double column vector
% representing upper bound on each of the variables.
% A Constraint matrix.
% lhs Double column vector
% representing lefthand side value for each constraint
% in the constraint matrix.
% rhs Double column vector
% representing righthand side value for each constraint
% in the constraint matrix.
%
% Optional fields of cplex.Model:
% objname String representing the name of the objective.
% colname Char matrix representing the names of the matrix
% columns or, equivalently, the variable names.
% Set colname by cplex.Model.colname(1,:) = 'mycolname'
% rowname Char matrix representing the names of the matrix
% rows or, equivalently, the constraint names.
% Set colname by cplex.Model.rowname(1,:) = 'myrowname'
% ctype String containing the type of each column in the
% constraint matrix, specifying whether a variable
% is continuous, integer, binary, semi-continuous or
% semi-integer. The possible char vales are
% 'B','I','C','S','N'. Set ctype(j) to 'B', 'I','C',
% 'S', or 'N' to indicate that x(j) should be binary,
% general integer, continuous, semi-continuous or
% semi-integer (respectively).
%
% sos Struct vector representing the SOSs.
% sos(i).name (Optional) String representing the name of sos(i).
% sos(i).type Type of sos(i), char '1' or '2'.
% sos(i).ind Double column vector representing
% the index of SOS to be added.
% sos(i).wt Double column vector representing
% the weights of the SOS to be added.
% Q Quadratic objective matrix.
% qc Struct vector representing the quadratic constraints.
% qc(i).name (Optional) String representing the name of qc(i).
% qc(i).sense Sense of quadratic constraint, char 'L' or 'G'.
% qc(i).a Double column vector representing
% the linear part of the quadratic constraint.
% qc(i).rhs Righthand side term for the constraint.
% qc(i).Q matrix representing the
% Quadratic part of the quadratic constraint.
%
% indicator Struct vector representing the indicator constraints.
% indicator(i).name (Optional) String representing the name
% of indicator(i).
% indicator(i).variable Binary variable that acts as the
% indicator for the constraint.
% indicator(i).complement Boolean value that specifies whether the
% indicator variable is complemented.
% indicator(i).a Double column representing
% the linear portion of the indicator constraint.
% indicator(i).rhs Righthand side value for the linear portion
% of the indicator constraint.
% indicator(i).sense char 'L','G' or 'E'.
% See also addIndicators, addSOSs, addQCs.
Model;
% Param Parameters for the math programming solver.
% The behavior of CPLEX is controlled by a variety of parameters that
% can be accessed and modified by the user. Each parameter is a field
% of the Cplex.Param structure.
%
% Example:
% set Parameter:
% cplex.Param.lpmethod.Cur = 5
% get Parameter:
% cplex.Param.lpmethod.Cur
%
% For the usage of each parameter please refer to the IBM ILOG CPLEX
% Parameters Reference Manual
Param;
% DisplayFunc The Display Function of the Model
% The default value of this property is @disp, the function handle
% of the display function in MATLAB. With the default, all of the
% log information from CPLEX will be displayed. If the
% Cplex.DisplayFunc property is set to empty, then the log
% information from CPLEX will not be displayed. In addition,
% users can write a custom DisplayFunc to control the output
DisplayFunc;
end%end of properties
properties (Hidden = true)
Handle;
Version;
end%end of properties
properties (Constant = true, Hidden = true)
% Default is a struct contain the hierarchy of Params and Quality
% And it is a Constant property in Cplex class, which mean it is a
% property belong to Cplex class, not belong to any Cplex object,
% then we can reuse Default in each Cplex object, which like the
% static property in C++ class
Default = cplexlink124 ([], 'getParamHierarchy');
end%end of properties
function out = display(cpx)
% Overwrite build-in display function
% See also Cplex.
end %end of function
function out = terminate(cpx)
% Cplex.terminate Interrupts an ongoing solve() method invocation.
% Use this method to implement stop buttons for a GUI.
% See also Cplex.
end %end of function
function out = Cplex(modelname, varargin)
% Cplex The constructor for Cplex objects. The constructor takes one
% optional argument to specify the problem name or a
% problem structure of one of the forms described in each toolbox
% function. Note that if the problem structure contains information
% for a least squares problem (C and d) it may not contain a quadratic
% or linear objective (H and f).
%
% Example:
% prob.f = 1
% prob.Aineq = 1;
% prob.bineq = 10;
% prob.ub = 5;
% cplex = Cplex(prob);
%
% See also Cplex.
end %end of function
function out = getVersion(cpx)
% Cplex.getVersion Returns the Version of CPLEX
%
% Example:
% cplex.getVersion()
%
% See also Cplex.
end %end of function
function out = getChgParam(cpx)
% Cplex.getChgParam Returns a struct of parameters which are not
% set at their default values.
%
% Example:
% cplex.getChgParam()
%
% See also Cplex.
end %end of function
function out = readModel(cpx, filename)
% Cplex.readModel Reads a CPLEX Model from a file and copies it into
% the invoking object.
%
% Example:
% cplex.readModel('myprob.lp')
%
% See also the example lpex2.m in the examples directory.
%
% Parameters:
% filename string
% The filename must end in one of these suffixes: .lp,
% .mps, .sav and .gz.
%
% See also Cplex.
end %end of function
function out = writeModel(cpx, filename)
% Cplex.writeModel Writes the CPLEX Model of the invoking object to a
% file.
%
% Example:
% cplex.writeModel('myprob.lp')
%
% See also the example lpex2.m in the examples directory.
%
% Parameters:
% filename string
% A file with one of the formats
% MPS MPS format
% LP CPLEX LP format with names modified to
% conform to LP format
% REW MPS format with all names changed to
% generic names
% RMP MPS format, with all names changed to
% generic names
% RLP LP format, with all names changed to
% generic names
%
% See also Cplex.
end %end of function
function out = writeConflict(cpx, filename)
% Cplex.writeConflict Writes a Conflict file named filename.
%
% Example:
% cplex.writeConflict('Conflict.lp')
%
% Parameters:
% filename string
% A file in the .lp format.
%
% See also Cplex.
end %end of function
function out = readOrder(cpx, filename)
% Cplex.readOrder Reads a priority order file from the file
% specified by filename.
%
% Example:
% cplex.readOrder('Order.ord')
%
% Parameters:
% filename string
% A file in the .ord format.
%
% See also Cplex.
end %end of function
function out = writeOrder(cpx, filename)
% Cplex.writeOrder Writes a priority order into the file specified
% by filename
%
% Example:
% cplex.writeOrder('Order.ord')
%
% Parameters:
% filename string
% A file in the .ord format.
%
% See also Cplex.
end %end of function
function out = readParam(cpx, filename)
% Cplex.readParam Reads parameters names and settings from the file
% specified by filename and copies them into the Cplex object.
%
% This routine reads and copies files in the PRM format, as
% created by writeParam.
% The PRM format is documented in the IBM ILOG CPLEX File Formats
% manual.
%
% Example:
% cplex.readParam('myprob.prm')
%
% Parameters:
% filename string
% A file in the .prm format.
%
% See also Cplex.
end %end of function
function out = writeParam(cpx, filename)
% Cplex.writeParam Writes the Parameter names and their current
% settingsinto the file specified by filename for all the CPLEX
% parameters that are not currently set at their default.
%
% Example:
% cplex.writeParam('myprob.prm')
%
% Parameters:
% filename string
% A file in the .prm format.
%
% See also Cplex.
end %end of function
function out = readBasis(cpx, filename)
% Cplex.readBasis Reads a basis from a BAS file and copies that basis
% into a Cplex problem object.
%
% The Parameter advance must be set to 1 (one), its default value,
% or 2(two)in order for the basis to be used for starting a
% subsequent optimization.
%
% Example:
% cplex.readBasis('myprob.bas')
%
% Parameters:
% filename string
% A file in the .bas format.
%
% See also Cplex.
end %end of function
function out = writeBasis(cpx, filename)
% Cplex.writeBasis
% Writes the most current basis associated with a Cplex
% problem object to a file.
%
% The file is saved in BAS format which corresponds to the industry
% standard MPS insert format for bases.
%
% When writeBasis is invoked, the current basis is written
% to a file.
% This routine does not remove the basis from the problem
% object.
%
% Example:
% cplex.writeBasis('myprob.bas')
%
% Parameters:
% filename string
% A file in the .bas format.
%
% See also Cplex.
end %end of function
function out = readMipStart(cpx, filename)
% Cplex.readMipStart Reads a MST file and copies the information of
% all the MIP starts contained in this file into a Cplex problem
% object.
%
% The parameter advance must be set to 1 (one), its default value,
% or 2(two) in order for the MIP starts to be used.
%
% Example:
% cplex.readMipStart('myprob.mst')
%
% Parameters:
% filename string
% A file in the .mst format.
%
% See also Cplex.
end %end of function
function out = writeMipStart(cpx, filename)
% Cplex.writeMipStart Writes a range of MIP starts of a Cplex
% problem object to a file in MST format.
%
% The MST format is an XML format and is documented in the
% stylesheet solution.xsl and schema solution.xsd in the
% include directory of the CPLEX distribution. IBM ILOG CPLEX
% File Formats also documents this format briefly.
%
% Example:
% cplex.writeMipStart('myprob.mst')
%
% Parameters:
% filename string
% A file in the .mst format.
%
% See also Cplex.
end %end of function
function out = solve(cpx)
% Cplex.solve Solves the current model in the invoking object.
%
% After a call to solve, the field Solution of the invoking
% object will be populated as well as the field Start for an LP
% or MipStart for a MIP.
%
% Example:
% cplex.solve()
%
% See also the example lpex1.m in the examples directory.
%
% See also Cplex.
end %end of function
function out = setDefault(cpx)
% Cplex.setDefault Resets all CPLEX parameters and settings to
% default values
%
% Example:
% cplex.setDefault()
%
% See also Cplex.
end %end of function
function out = populate(cpx)
% Cplex.populate Generates multiple solutions to a mixed integer
% programming (MIP) problem.
%
% After a call to solve, the field Solution of the invoking
% object will be populated as well as the field Start for an LP
% or MipStart for a MIP.
%
% Example:
% cplex.populate()
%
% See also Cplex.
end %end of function
function out = feasOpt(cpx, preflhs, prefrhs, preflb, prefub)
% Cplex.feasOpt Computes a minimum-cost relaxation of the righthand
% side values of constraints or bounds on variables in order
% to make an infeasible problem feasible.
%
% Example:
% cplex.feasOpt(preflhs, prefrhs, preflb, prefub)
% If one parameter is empty, set it to [].
% prefrhs=[]
% cplex.feasOpt(preflhs, prefrhs, preflb, prefub)
%
% Parameters:
% preflhs double column vector
% The length must be at least equal to the
% number of rows in the problem. An empty
% vector may be specified if no range values
% are allowed to be relaxed or none are
% present in the active problem.
% When not empty, the vector specifies the
% preference values that determine the cost
% of relaxing each range.
% prefrhs double column vector
% The length must be at least equal to the
% number of rows in the problem. An empty
% vector may be specified if no rhs values
% are allowed to be relaxed.
% When not empty, the vector specifies the
% preference values that determine the cost
% of relaxing each constraint.
% preflb double column vector
% The length must be at least equal to the
% number of columns in the problem. An empty
% vector may be passed if no lower bound of
% any variable is allowed to be relaxed.
% When not NULL, the vector specifies the
% preference values that determine the cost
% of relaxing each lower bound.
% prefub double column vector
% The length must be at least equal to the
% number of columns in the problem. An empty
% vector may be passed if no upper bound of
% any variable is allowed to be relaxed.
% When not empty, the vector specifies the
% preference values that determine the cost
% of relaxing each upper bound.
%
% Parameter FeasOptMode values:
% 0 Minimize the sum of all required relaxations in first
% phase only; default
% 1 Minimize the sum of all required relaxations in first
% phase and execute second phase to find optimum among
% minimal relaxations
% 2 Minimize the number of constraints and bounds requiring
% relaxation in first phase only
% 3 Minimize the number of constraints and bounds requiring
% relaxation in first phase and execute second phase to
% find optimum among minimal relaxations
% 4 Minimize the sum of squares of required relaxations in
% first phase only
% 5 Minimize the sum of squares
% of required relaxations in first phase and execute
% second phase to find optimum among minimal relaxations
%
% It can minimize the weighted sum of the penalties for relaxations
% (denoted by SUM).
% It can minimize the weighted number of relaxed bounds and
% constraints (denoted by INF).
% It can minimize the weighted sum of the squared penalties of the
% relaxations (denoted by QUAD).
%
% See also Cplex.
end %end of function
function out = refineMipStartConflict(cpx,index)
% Cplex.refineMipStartConflict Refines a Conflict in order to
% determine why a given MIP start is not feasible in linear
% problem.
% In other words, this routine identifies a minimal conflict for the
% infeasibility of the linear constraints and bounds in a MIP start.
%
% Example:
% cplex.refineMipStartConflict(index)
%
% Parameters:
% index Index of the MIP start among all the MIP starts
% associated with the problem.
% Returns:
% Cplex.Conflict A struct vector with the fields:
% colind Vector to receive the list of the
% indices of the variables that
% participate in the Conflict.
% The length of the vector must not be
% less than the number of columns in the
% conflict.
% If that number is not known, use the
% number of columns in the problem
% object instead.
% colbdstat Vector to receive the Conflict
% status of the columns.
% Entry colbdstat(i) gives the status of
% column colind(i).
% The length of the vector must not be
% less than the number of columns
% in the Conflict.
% If that number is not known, use the
% number of columns in the problem
% object instead.
% rowind Vector to receive the list of the
% indices of the constraints that
% participate in the Conflict.
% The length of the vector must not be
% less than the number of rows in the
% conflict.
% If that number is not known, use the
% total number of rows in the probem
% object instead.
% rowbdstat Vector to receive the Conflict
% status of the rows.
% Entry rowbdstat(i) gives the status of
% row rowind(i).
% The length of the vector must not be
% less than the number of rows in the
% conflict.
% If that number is not known, use the
% number of rows in the problem object
% instead.
% status Status of the Conflict
%
% See also Cplex.
end %end of function
function out = refineConflict(cpx)
% Cplex.refineConflict Identifies a minimal Conflict for the
% infeasibility of the linear constraints and the variable bounds
% in the current
% linear problem.
%
% Example:
% cplex.refineConflict()
%
% Returns:
% Cplex.Conflict A struct vector with the fields:
% colind Vector to receive the list of the
% indices of the variables that
% participate in the Conflict.
% The length of the vector must not be
% less than the number of columns in the
% Conflict.
% If that number is not known, use the
% number of columns in the problem
% object instead.
% colbdstat Vector to receive the Conflict
% status of the columns.
% Entry colbdstat[i] gives the status of
% column colind[i].
% The length of the vector must not be
% less than the number of columns
% in the Conflict.
% If that number is not known, use the
% number of columns in the problem
% object instead.
% rowind Vector to receive the list of the
% indices of the constraints that
% participate in the Conflict.
% The length of the vector must not be
% less than the number of rows in the
% Conflict.
% If that number is not known, use the
% total number of rows in the problem
% object instead.
% rowbdstat Vector to receive the Conflict
% status of the rows.
% Entry rowbdstat[i] gives the status of
% row rowind[i].
% The length of the vector must not be
% less than the number of rows in the
% Conflict.
% If that number is not known, use the
% number of rows in the problem object
% instead.
% status Status of the Conflict.
%
% See also Cplex.
end %end of function
function out = getProbType(cpx)
% Cplex.getProbType Accesses the problem type
%
% Probtype Meaning
% -1 Error: no problem or environment.
% 0 Linear program; no quadratic data or ctype
% information stored.
% 1 Problem with ctype information.
% 3 Problem with ctype information, integer variables
% fixed.
% 5 Problem with quadratic data stored.
% 7 Problem with quadratic data and ctype information.
% 8 Problem with quadratic data and ctype
% information, integer variables fixed.
% 10 Problem with quadratic constraints.
% 11 Problem with quadratic constraints and ctype
% information.
%
% See also Cplex.
end %end of function
function out = tuneParam(cpx,varargin)
% Cplex.tuneParam Tunes the Parameters of the environment for
% improved optimizer performance on the specified problem object.
%
% Example:
% cplex.tuneParam();
% cplex.tuneParam({cplex.Param.mip.strategy.heuristicfreq,...
% cplex.Param.mip.strategy.branch)
% cplex.tuneParam(cplex.Param.mip.cuts)
%
% See also Cplex
end %end of function
function out = addRows(cpx, lhs, A, rhs, rowname)
% Cplex.addRows Adds constraints to a specified Cplex problem object.
%
% Example:
% cplex.addRows(lhs, A, rhs)
% cplex.addRows(lhs, A, rhs, rowname)
%
% See also the example lpex1.m in examples directory
%
% Parameters:
% lhs double column vector
% Lefthand side term for each constraint to be
% added to the Cplex problem object.
% A double matrix
% The constraint matrix to be added to the Cplex problem
% object by rows, it is optional.
% rhs double column vector
% Righthand side term for each constraint to be added
% to the CPLEX problem object, it is a column vector.
% rowname char matrix
% Names of the new rows, it is optional.
%
% See also Cplex
end %end of function
function out = addCols(cpx, obj, A, lb, ub, ctype, colname)
% Cplex.addCols Adds columns to a specified CPLEX problem object.
%
% Example:
% cplex.addCols(obj)
% cplex.addCols(obj,A)
% cplex.addCols(obj,A,lb)
% cplex.addCols(obj,A,lb,ub)
% cplex.addCols(obj,A,lb,ub,ctype)
% cplex.addCols(obj,A,lb,ub,ctype,name)
%
% See also the example lpex1.m in examples directory
%
% Parameters:
% obj double column vector
% Objective function coefficients of the new
% variables.
% A double matrix
% Constraint matrix to be added to the Cplex problem
% object by columns.
% Optional.
% lb double column vector
% Lower bound on each of the new variables.
% Optional.
% if lb is not provided,
% lb defaults to zeros(length(obj),1)
% ub double column vector
% Upper bound on each of the new variables.
% Optional.
% if ub is not provided ub defaults to
% ones(length(obj),1)*Inf
% ctype String
% Type of each column in the constraint matrix,
% specifying whether a variable is continuous,
% integer, binary, semi-continuous, or
% semi-integer.
% Optional.
% if ctype is not provided ctype defaults to
% char(ones([1 length(obj)])*('C'))
% name char matrix
% Names of the new columns.
% Optional.
% See also Cplex.
end %end of function
function out = delRows(cpx, which)
% Cplex.delRows Removes rows with indices listed in 'which' from the
% Model.
%
% Example:
% cplex.delRows (which)
% cplex.delRows ([1 2 5])
% deletes the constraints in positions 1, 2 and 5
% cplex.delRows ([1:100])
% deletes the first 100 constraints
%
% Parameters:
% which double vector
% Indices of the constraints (rows) to be
% removed.
%
% See also Cplex.
end %end of function
function out = delCols(cpx, which)
% Cplex.delCols Removes columns with indices listed in
% 'which' from the Model.
%
% Example:
% cplex.delCols (which)
% cplex.delCols ([1 2 5])
% deletes the variables in positions 1, 2 and 5
% cplex.delCols ([1:100])
% deletes the first 100 variables
% Parameters:
% which double vector
% Indices of the constraints (rows) to be
% removed.
%
% See also Cplex.
end %end of function
function out = addSOSs(cpx, type, ind, wt, varargin)
% Cplex.addSOSs Adds information about a special ordered set
% (SOS) to a problem object of type MILP, MIQP, or MIQCP.
% The problem may already contain SOS information.
%
% Example
% cplex.addSOSs (type, ind, wt, name);
% Add single SOS:
% cplex.addSOSs ('1', [1 2 3]', [1 2 3]', {'sos1(1)'});
% Add set of 2 SOSs:
% cplex.addSOSs ...
% ('12', {[1 2 3]' [4 5 6]'}, {[2 3 4]' [5 6 7]'}, {'s1' 's2'})
% Add SOS structure or structure vector:
% cplex.addSOSs(sos);
% where sos is structure or structure vector with the fields
% type, ind, wt and an optional name.
% See also the example mipex3.m in examples directory
%
% Parameters:
% type char '1' or '2' or string
% SOS type information for the sets to be added.
% ind double column vector or cell vector
% Indices for the sets to be added.
% wt double column vector or cell vector
% Weights for the sets to be added.
% name cell vector
% Names of the new SOSs. Optional.
%
% See also Cplex.
end %end of function
function out = addQCs(cpx, a, Q, sense, rhs, varargin)
% Cplex.addQCs Adds a quadratic constraint or quadratic constraint
% set to a specified CPLEX problem object.
%
% Example:
% cplex.addQCs(a, Q, sense, rhs, name);
% Add single qc
% cplex.addQCs([0 0 0]',[1 0 0;0 1 0;0 0 1],'L',1,{'qc1'});
% Add qc set(3 qcs)
% cplex.addQCs(
% [0 0 0;1 0 0;0 1 0]',
% {[1 0 0;0 1 0;0 0 1]
% [1 0 0;0 1 0;0 0 1]
% [1 0 0;0 1 0;0 0 1]},
% 'LLG',
% [1.0 2.0 3.0],
% {'qc1' 'qc2' 'qc3'});
% Add qc structure or qc structure vector
% cplex.addQCs(qc);
% qc is structure or structure vector with a, Q, sense,
% rhs,and optional name fields.
%
% See also the example qcpex1.m in examples directory.
%
% Parameters:
% a double column vector or matrix
% Linear part of the quadratic constraint to be added by
% column.
% Q double matrix or cell vector
% Quadratic part of the quadratic constraint to be added.
% sense char 'L' or 'G' or string
% Sense of the constraint to be added. Note that
% quadratic constraints may only be less-than-or-equal-to
% greater-than-or-equal-to constraints.
% rhs double or double row vector
% Righthand side term for the constraint to be added.
% name cell vector
% The name of the constraint to be added. Optional.
%
% See also Cplex.
end %end of function
function out = addIndicators(cpx, variable, complemented, a, sense, rhs, varargin)
% Cplex.addIndicators Adds indicator constraints to
% the specified problem.
%
% Example:
% cplex.addIndicators(variable, complemented,
% a, sense, rhs, name)
% Add one indicator with a name
% cplex.addIndicators(5, 1,
% [1 2 3 4 5 6]', 'E', 100, {'indc3'});
% Add two indicators with names
% cplex.addIndicators ([5 6], [0 0],
% {[1 1 2 2]' [1 2 3 4 5]'}, 'EE', [10 100],
% {'indc3' 'indc4'});
% Add indicator structure or structure vector
% cplex.addIndicators(indicator);
% where indicator is structure or structure vector which has
% the fields variable, complemented, a, sense, rhs and
% an optional name.
%
% Parameters:
% variable double or vector
% Binary variable that acts as the indicator for this
% constraint.
% complemented double or vector
% Boolean value that specifies whether the indicator
% variable is complemented.
% The linear constraint must be satisfied when the indicator
% takes a value of 1 (one) if the indicator is not
% complemented, and similarly, the linear constraint must be
% satisfied when the indicator takes a value of 0 (zero) if
% the indicator is complemented.
% a double column vector or cell vector
% Linear portion of the indicator constraint.
% sense char 'L','G' or 'E' or string
% Sense of the linear portion of the indicator
% constraint. Specify 'L' for <= or 'G' for >= or 'E' for
% ==.
% rhs double or double row vector
% Righthand side value for the linear portion of the
% indicator constraint.
% name optional parameter cell vector
% Name of the constraint to be added.
% May be empty, in which case the new constraint is assigned a
% default name if the indicator constraints already resident
% in the Cplex problem object have names; otherwise, no name
% is associated with the constraint.
%
% See also Cplex.
end% end of function
function out = subsref(cpx, s)
% Cplex.subsref Overwrites built-in subsref from MATLAB
% See also Cplex.
function out = subsasgn(cpx,index,val)
% Cplex.subsasgn Overwrites built-in subsasgn from MATLAB
% See also Cplex.
end% end of function
end %end of methods
function out = loadobj(cpx)
% See also Cplex.
end % end of function
end %end of methods
function out = saveobj(cpx)
% See also Cplex.
end % end of function
function out = defaultNames(cpx, start, num, prefix) %#ok
% The routine defaultNames get the default names used for
% addCols and addRows.
% See also Cplex.
end % end of function
function out = isConsistent(cpx)
% The routine isConsistent check verifies consistency of the
% Model data and throws exceptions.
% See also Cplex.
end%end of function
function out = checkOrder(cpx)
% The routine checkOrder: checks Cplex.Order property.
% See also Cplex.
end%end of function
function out = checkStart(cpx)
% The routine checkStart: checks the Start and MipStart for
% optimization. There are two kinds of Start, one for continous,
% another for discrete. Please refer to the CPLEX User's Manual.
% Note: the indices here is MipStart from 1 to n.
% See also Cplex.
end%end of function
function out = isFeasOptConsistent(cpx, preflhs, prefrhs, preflb, prefub)
% The routine isFeasOptConsistent check the parameters of feasOpt:
% at least one component of input
% should be provided.
% See also Cplex.
end %end of function
function out = getCallbackX(cpx, cbhandle)
% See also Cplex.
end %end of function
function out = clearSolution(cpx)
% See also Cplex.
end%end of function
function out = runDisplayFunc(cpx,func_handle,string)
% See also Cplex.
end%end of function
end%end of methods
end%end of class
[1]陈锦鹏, 胡志坚, 陈颖光,等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021.
❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除