- TypeError: unsupported operand type(s) for +=: ‘Dense‘ and ‘str‘
开始King
人工智能pythontensorflow
tensorflow2.0报这个错误因为你在定义模型的时候model=Sequential(SimpleRNN(3),Dense(5,activation='softmax'))是不是感觉少了点什么,没加[]model=Sequential([SimpleRNN(3),Dense(5,activation='softmax')])
- 基于TensorFlow 2.0的DBN故障诊断程序
ydlhnust
深度学习
以下是一个基于TensorFlow2.0的DBN故障诊断程序,包含特征可视化和结果分析。程序使用合成振动数据进行演示,可直接运行。```pythonimportnumpyasnpimportmatplotlib.pyplotaspltimporttensorflowastffromtensorflow.kerasimportlayers,modelsfromsklearn.model_select
- Anaconda Tensorflow2.0稳定版安装教程
YeahQing
Anaconda安装Anaconda安装国内因为某些原因,可以在清华镜像站下载。Anaconda默认自带python,所以无需提前下载python清华镜像站Anaconda官网image-20191124164832545.pngimage-20191124165041433.png此处两个高级设置的解释:将Anaconda添加到环境变量中。(无需勾选)可以让其他IDE检测到Anaconda的Py
- Tensorflow2.0 查看网络中每层的名称、权重及特征图绘制
cofisher
Tensorflow2.0深度学习PHM项目实战--建模篇深度学习pythontensorflow
文章目录项目介绍实现过程1、构建网络2、查看每层名称3、查看指定层的权值4、特征图绘制项目介绍在网络训练过程中,我们经常需要查看某层权重的变化过程,这其实只需要简单的API就能实现。为了方便演示,我们使用迁移学习到的MobileNetV2网络。实现过程1、构建网络我们将冻结迁移到的MobileNetV2网络,然后将它最后的分类层换成我们自己定义的分类层即可。mobile=tf.keras.appl
- Tensorflow2.0 评价模型复杂度:参数量、FLOPs 和 MACC 计算
cofisher
深度学习PHM项目实战--建模篇tensorflow深度学习卷积python
文章目录项目介绍代码实现:对于迁移学习网络(复杂)1、迁移学习不带分类层的简化版MobileNetV2网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC代码实现:对于自编写网络(简单)1、导入网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC项目介绍在论文写作时,我们经常会对所提出模型的复杂度进行分析,主要用到的评价指标包括参数量、FLOPs和MACC,它们的计
- Tensorflow2.0 对自己的图片数据集进行分类
cofisher
python深度学习PHM项目实战--建模篇tensorflowpython深度学习
文章目录项目介绍数据集网络模型代码实现1、导入需要的库2、定义图像加载和预处理函数3、定义构造Dataset数据集函数4、构造Dataset数据集5、构建网络6、初始化优化器和损失函数7、定义损失函数8、定义梯度下降函数9、保留Checkpoint文件10、训练过程11、保存模型到.h5文件中12、绘制准确率曲线
- 为使用tensorflow2.0 以上版本。卸载cuda8.0 安装cuda10.1 cudnn7.6
xuanxi
配置一个虚拟环境名为tfkeras:python3.5-3.8+cuda10.1+tensorflow-gpu==2.1-2.3+cudnn7.6>condacreate-ntf2keraspython=3.8#先创建一个名为tfkeras,环境为python3.8的环境下一步开始在tfkeras这个虚拟环境下面装package卸载cuda8.0因为winserver2012原本装的是cuda8.
- Tensorflow2.0实现像素归一化与频谱归一化,一次彻底地梳理
人工智能T哥
一、前言归一化技术的改进是生成对抗网络(GenerativeAdversarialNetworks,GAN)中众多改进的一种,本文介绍常用于当前GAN中的像素归一化(Pixelnormalization,或称为像素规范化)和频谱归一化(Spectralnormalization,或称频谱规范化),在高清图片生成中,这两种归一化技术得到了广泛使用,最后使用Tensorflow2实现像素归一化和频谱归
- tensorflow2.0的cpu与gpu运行时间对比
尘埃飞舞
人工智能pythontensorflow
文章目录前言一、导入环境二、定义函数三、测试前言这里运用一个自定义大小的矩阵数据计算,来测试gpu与cpu运算时间的对比。以下为实现方法一、导入环境示例:pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。#设置显卡内存使用率,根据使用率占用importosos.environ["TF_FORCE_GPU_ALLOW_GROWTH"]="true"importtensor
- 如何用 Python 和 Tensorflow 2.0 神经网络分类表格数据?
nkwshuyi
以客户流失数据为例,看Tensorflow2.0版本如何帮助我们快速构建表格(结构化)数据的神经网络分类模型。变化表格数据,你应该并不陌生。毕竟,Excel这东西在咱们平时的工作和学习中,还是挺常见的。在之前的教程里,我为你分享过,如何利用深度神经网络,锁定即将流失的客户。里面用到的,就是这样的表格数据。时间过得真快,距离写作那篇教程,已经一年半了。这段时间里,出现了2个重要的变化,使我觉得有必要
- Tensorflow2.0笔记 - where,scatter_nd, meshgrid相关操作
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
本笔记记录tf.where进行元素位置查找,scatter_nd用于指派元素到tensor的特定位置,meshgrid用作绘图的相关操作。importtensorflowastfimportnumpyasnpimportmatplotlib.pyplotasplttf.__version__#where操作查找元素位置#输入的tensor是True,False组成的tensortensor=tf.
- huggingface 的trainer训练框架优势
be_humble
人工智能深度学习python
背景HuggingfaceTransformers是基于一个开源基于transformer模型结构提供的预训练语言库,它支持Pytorch,Tensorflow2.0,并且支持两个框架的相互转换。框架支持了最新的各种NLP预训练语言模型,使用者可以很快速的进行模型的调用,并且支持模型furtherpretraining和下游任务fine-tuning。Transformers库写了了一个trans
- Tensorflow2.0笔记 - Tensor的限值clip操作
亦枫Leonlew
TensorFlow2.0笔记tensorflow人工智能python深度学习
本笔记主要记录使用maximum/minimum,clip_by_value和clip_by_norm来进行张量值的限值操作。importtensorflowastfimportnumpyasnptf.__version__#maximum/minimumz做上下界的限值tensor=tf.random.shuffle(tf.range(10))print(tensor)#maximum(x,y,
- Tensorflow2.0基础-笔记-图像识别-猫狗数据集
二流子学程序
tensorflow2.0tensorflow图像识别
importtensorflowastfimportmatplotlib.pyplotaspltimportnumpyasnp%matplotlibinlineimportglobimage_filenames1=glob.glob('./DataSet/猫狗数据集_2000/dc_2000/train/cat/*.jpg')image_filenames2=glob.glob('./DataSe
- Tensorflow2.0笔记 - tensor排序操作
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习tensorflow2
本笔记主要记录sort,argsort,以及top_k操作,加上一个求TopK准确度的例子。importtensorflowastfimportnumpyasnptf.__version__#sort,argsort#对1维的tensor进行排序tensor=tf.random.shuffle(tf.range(10))print(tensor)#升序print("======tf.sort(di
- Tensorflow2.0笔记 - tensor的padding和tile
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能深度学习python
本笔记记录tensor的填充和tile操作,对应tf.pad和tf.tileimporttensorflowastfimportnumpyasnptf.__version__#pad做填充#tf.pad(tensor,paddings,mode='CONSTANT',name=None)#1维tensor填充tensor=tf.random.uniform([5],maxval=10,dtype=
- 2019年上半年收集到的人工智能开源框架介绍文章
城市中迷途小书童
2019年上半年收集到的人工智能开源框架介绍文章TensorFlow基本使用TensorFlow.js:让你在浏览器中也能玩转机器学习人工智能学习框架TensorFlow渐近分析TensorFlow什么的都弱爆了,强者只用Numpy搭建神经网络TensorFlow框架的开源工具箱Ludwig人工智能学习框架TensorFlow必须掌握和了解的数学基础TensorFlow2.0来了9步教你用NumP
- conda多虚拟环境的搭建与切换
溯源006
pythonconda
在Python开发中,很多时候我们希望每个应用有一个独立的Python环境(比如应用1需要用到TensorFlow1.X,而应用2使用TensorFlow2.0)。这时,Conda虚拟环境即可为一个应用创建一套“隔离”的Python运行环境。使用Python的包管理器conda即可轻松地创建Conda虚拟环境。常用命令如下【1】:condacreate--name[env-name]#建立名为[e
- Tensorflow2.0笔记 - 范式norm,reduce_min/max/mean,argmax/min, equal,unique
亦枫Leonlew
TensorFlow2.0pythontensorflow笔记人工智能
练习norm,reduce_min/max,argmax/min,equal,unique等相关操作。范数主要有三种:importtensorflowastfimportnumpyasnptf.__version__#范数参考:https://blog.csdn.net/HiWangWenBing/article/details/119707541tensor=tf.convert_to_tens
- pythorch及tensorflow2.0以上版本的安装
Rayne_tab
前言从tensorflow1.X用到现在了,pytorch也是去年接触的,这两个框架都属于更新比较快的,因此难免更新自己的版本。最头疼的莫过于CUDA,cudnn这些东西的版本匹配。以前看了不少教程,让我们安装cuda,cudnn,配置环境变量。其实,这两个框架的GPU版本配置早就很简单很简单了!根本不用下载CUDA,cudnn这些!准备工作要准备的就两点:1.Anaconda/Miniconda
- Tensorflow2.0笔记 - tensor的合并和分割
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
主要记录concat,stack,unstack和split相关操作的作用importtensorflowastfimportnumpyasnptf.__version__#concat对某个维度进行连接#假设下面的tensor0和tensor1分别表示4个班级35名同学的8门成绩和两个班级35个同学8门成绩tensor0=tf.ones([4,35,8])tensor1=tf.ones([2,3
- 所有情况下tensorflow2.0深度学习环境最快安装方法!
小火龙G
首先,你需要下载一个miniconda安装记得添加环境变量就是在安装过程中看到path这个单词的选项的时候就给勾选上就行然后启动CMD,不会启动CMD请百度在CMD内输入以下命令condalist如果有类似界面即代表环境正确添加如果未显示类似界面请重新安装(比手动path易懂)CMD然后就可以安装了输入condainstalltensorflow-gpu==2.0.0然后等待运行完成就行,如果不能
- 基于Python TensorFlow keras.Sequential深度神经网络的深度学习回归
疯狂学习GIS
1写在前面前期一篇博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/114001720)详细介绍了基于TensorFlowtf.estimator接口的深度学习网络;而在TensorFlow2.0中,新的Keras接口具有与tf.estimator接口一致的功能,且其更易于学习,对于新手而言友好程度更高;在TensorFlow官网
- Tensorflow2.0笔记 - 不使用layer方式,简单的MNIST训练
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
本笔记不使用layer相关API,搭建一个三层的神经网络来训练MNIST数据集。前向传播和梯度更新都使用最基础的tensorflowAPI来做。importtensorflowastffromtensorflowimportkerasfromtensorflow.kerasimportdatasetsimportnumpyasnpdefload_mnist():path=r'./mnist.npz
- Tensorflow2.0笔记 - Broadcasting和Tile
亦枫Leonlew
TensorFlow2.0笔记tensorflow2python深度学习人工智能
关于broadcasting的介绍,参考这篇文章。https://blog.csdn.net/python_LC_nohtyp/article/details/104097417importtensorflowastfimportnumpyasnptf.__version__#关于broadcasting的介绍,参考这篇文章#https://blog.csdn.net/python_LC_noht
- Tensorflow2.0笔记 - 基础数学运算
亦枫Leonlew
TensorFlow2.0笔记tensorflow人工智能深度学习python
本笔记主要记录基于元素操作的+,-,*,/,//,%,**,log,exp等运算,矩阵乘法运算,多维tensor乘法相关运算importtensorflowastfimportnumpyasnptf.__version__#element-wise运算,对应元素的+,-,*,/,**,//,%tensor1=tf.fill([3,3],4)tensor2=tf.ones([3,3],dtype=t
- Tensorflow2.0笔记 - 修改形状和维度
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python计算机视觉深度学习
本次笔记主要使用reshape,transpose,expand_dim,和squeeze对tensor的形状和维度进行操作。importtensorflowastfimportnumpyasnptf.__version__#tensor的shape和维数获取#假设下面这个tensor表示4张28*28*3的图片tensor=tf.random.uniform([4,28,28,3],minval
- Tensorflow2.0笔记 - Tensor的数据索引和切片
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
主要涉及的了基础下标索引"[]",逗号",",冒号":",省略号"..."操作,以及gather,gather_nd和boolean_mask的相关使用方法。importtensorflowastfimportnumpyasnptf.__version__tensor=tf.random.uniform([1,5,5,3],minval=10,maxval=30,dtype=tf.int32)pr
- Tensorflow2.0笔记 - 创建tensor
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
tensor创建可以基于numpy,list或者tensorflow本身的API。笔记直接上代码:importtensorflowastfimportnumpyasnpimportmatplotlib.pyplotasplttf.__version__#通过numpy创建tensortensor0=tf.convert_to_tensor(np.ones([2,3]))print(tensor0)
- Tensorflow2.0笔记 - 基本数据类型,数据类型转换
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能深度学习
【TensorFlow2.0】(1)tensor数据类型,类型转换_tensorflowtensor转int-CSDN博客文章浏览阅读1.5w次,点赞8次,收藏28次。各位同学好,今天和大家分享一下TensorFlow2.0中的tensor数据类型,以及各种类型之间的相互转换方法。1.tf.tensor基础操作scaler标量:1.2vector向量:[1.2]、[1.1,2.2,3.3]注意:此
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs