hadoop之MapReduce的案例(排序、最大值)

hadoop之MapReduce的案例(排序、最大值)_第1张图片




    4.0.0

    com.xuan
    hadoopdemo
    1.0-SNAPSHOT

    hadoopdemo
    
    http://www.example.com

    
        UTF-8
        1.8
        1.8
    

    
        
            junit
            junit
            4.11
            test
        
        
            org.apache.hadoop
            hadoop-common
            2.5.2
        
        
            org.apache.hadoop
            hadoop-hdfs
            2.5.2
        
        
            org.apache.hadoop
            hadoop-client
            2.5.2
        
        
            junit
            junit
            4.11
            test
        
    

案列一:排序

hadoop之MapReduce的案例(排序、最大值)_第2张图片

hadoop之MapReduce的案例(排序、最大值)_第3张图片

package squencefile;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.DefaultCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;

import java.io.IOException;

public class DisticAndSort {
    /**
     * 将每行读取进来,转换成输出格式<行数据,"">
      */
    public static class MyMapper extends Mapper{
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            context.write(value,new Text(""));
        }
    }

    /**
     * 将行数据进行去重,输出格式<行数据,"">
     */
    public static class MyReduce extends Reducer{

        @Override
        protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
            //直接输出
            context.write(key,new Text(""));
        }
    }

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        //创建一个job,也就是一个运行环境
        Configuration conf=new Configuration();
        //集群运行
//        conf.set("fs.defaultFS","hdfs://hadoop:8088");
        //本地运行
        Job job=Job.getInstance(conf,"DisticAndSort");
        //程序入口(打jar包)
        job.setJarByClass(DisticAndSort.class);

        //需要输入三个文件:输入文件
        FileInputFormat.addInputPath(job,new Path("F:\\filnk_package\\hadoop-2.10.1\\data\\test2\\file1.txt"));
        FileInputFormat.addInputPath(job,new Path("F:\\filnk_package\\hadoop-2.10.1\\data\\test2\\file2.txt"));
        FileInputFormat.addInputPath(job,new Path("F:\\filnk_package\\hadoop-2.10.1\\data\\test2\\file3.txt"));
        //编写mapper处理逻辑
        job.setMapperClass(DisticAndSort.MyMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        //shuffle流程

        //编写reduce处理逻辑
        job.setReducerClass(DisticAndSort.MyReduce.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        //输出文件
        FileOutputFormat.setOutputPath(job,new Path("F:\\filnk_package\\hadoop-2.10.1\\data\\test2\\out"));

        //运行job,需要放到Yarn上运行
        boolean result =job.waitForCompletion(true);
        System.out.print(result?1:0);

    }
}

hadoop之MapReduce的案例(排序、最大值)_第4张图片

 file1.txt 

2012-3-1 a
2012-3-2 b
2012-3-3 c
2012-3-4 d
2012-3-5 a
2012-3-6 b
2012-3-7 c
2012-3-3 c 

 hadoop之MapReduce的案例(排序、最大值)_第5张图片

hadoop之MapReduce的案例(排序、最大值)_第6张图片

 案列二:求最高气温

hadoop之MapReduce的案例(排序、最大值)_第7张图片

temp1.txt 

 1990-01-01 -5
1990-06-18 35
1990-03-20 8
1989-05-11 23
1989-07-05 38
1990-07-01 36

hadoop之MapReduce的案例(排序、最大值)_第8张图片

hadoop之MapReduce的案例(排序、最大值)_第9张图片

package squencefile;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class MaxTemp {
    /**
     * map处理逻辑
     * 将输入的value进行拆分,拆分出年份,然后输出<年份,日期:温度>
     */
    public static class MyMapper extends Mapper{
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            //将输入value进行拆分
            String line=value.toString();
            String[] lineArr=line.split(" ");
            //输出年份
            String year=lineArr[0].substring(0,4);
            //输出格式:
            context.write(new Text(year),new Text(lineArr[0]+":"+lineArr[1]));

        }
    }

    /**
     *
     */
    public static class Myreducer extends Reducer{
        private double maxTemp = Long.MIN_VALUE;
        private String maxDay = null;
        //获取每年气温最大值
        @Override
        protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
            for(Text tempVal:values){
                //生成数组[日期,温度]
                String tempStr = tempVal.toString();
                String[] tempArr=tempStr.split(":");
                Long temp = Long.parseLong(tempArr[1]);
                //比较,获取最大值
                maxTemp = temp >maxTemp?temp:maxTemp;
                //获取天数
                maxDay = tempArr[0];
            }
            context.write(new Text(maxDay), new DoubleWritable(maxTemp));
        }
    }
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        //创建一个job,也就是一个运行环境
        Configuration conf=new Configuration();
        //集群运行
//        conf.set("fs.defaultFS","hdfs://hadoop:8088");
        //本地运行
        Job job=Job.getInstance(conf,"MaxTemp");
        //程序入口(打jar包)
        job.setJarByClass(MaxTemp.class);

        //需要输入俩个文件:输入文件
        FileInputFormat.addInputPath(job,new Path("F:\\filnk_package\\hadoop-2.10.1\\data\\test3\\temp1.txt"));
        FileInputFormat.addInputPath(job,new Path("F:\\filnk_package\\hadoop-2.10.1\\data\\test3\\temp2.txt"));
        //编写mapper处理逻辑
        job.setMapperClass(MaxTemp.MyMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        //shuffle流程

        //编写reduce处理逻辑
        job.setReducerClass(MaxTemp.Myreducer.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        //输出文件
        FileOutputFormat.setOutputPath(job,new Path("F:\\filnk_package\\hadoop-2.10.1\\data\\test3\\out"));

        //运行job,需要放到Yarn上运行
        boolean result =job.waitForCompletion(true);
        System.out.print(result?1:0);

    }
}

你可能感兴趣的:(【hadoop】,hadoop)