box filter的三种实现(c++)

box filter简单解释

box filter的作用很简单,即对局部区域求平均,并把值赋给某个点,一般我们赋给区域中心。用公式表达如下:
r e s u l t ( r o w , c o l ) = 1 n 2 ∑ i p a t c h ∑ j p a t c h i m a g e ( i , j ) result(row, col) = \cfrac{1}{n^2} \sum_i^{patch} {\sum_j^{patch} {image(i,j)}} result(row,col)=n21ipatchjpatchimage(i,j)
其中 p a t c h patch patch是以 ( r o w , c o l ) (row, col) (row,col)为中心的一块区域。

为了跟后面的公式及程序对应,我们做如下定义:

  • r r r:patch的半径。半径在宽高方向可以不相等,但是本文目的不在于对半径的处理,所以简单起见设为相等。
  • n n n:patch的长度,等于 ( 2 ∗ r + 1 ) (2*r+1) (2r+1
  • ( r o w s , c o l s ) (rows, cols) (rows,cols):图像的尺寸,行数和列数。
  • ( r o w , c o l ) (row, col) (row,col):对完整图像的索引。
  • ( i , j ) (i, j) (i,j):对图像patch的索引
  • k k k:对通道的索引。

1. 暴力实现——四循环

外层两个循环是关于完整图像 ( r o w , c o l ) (row, col) (row,col)的循环,内层两个循环是关于图像patch ( i , j ) (i, j) (i,j)的循环。

注意:如果图像是多通道的话实际上还有一个通常维度的循环,但是通道数不是本文优化的重心,所以本文不再赘述这个因素,后文也不再提,并且在计算量的估计中也会把这个因素省略掉。

这个实现比较简单,需要做的计算有:

  • r o w s ∗ c o l s ∗ n ∗ n rows * cols * n * n rowscolsnn 次加法,内层循环的计算量 o ( n 2 ) o(n^2) o(n2),非常大
  • r o w s ∗ c o l s rows * cols rowscols 次除法:除法为了求平均

2. 行列分离

patch的平均可以进行行列分离,也就是先对行方向做平均,并缓存结果,再对缓存的结果做列方向的平均。以公式的形式表达如下:
1 n 2 ∑ i ∑ j i m a g e ( i , j ) = 1 n ∑ i 1 n ∑ j i m a g e ( i , j ) \cfrac{1}{n^2} \sum_i {\sum_j {image(i,j)}} = \cfrac{1}{n}\sum_i {\cfrac{1}{n} \sum_j {image(i,j)}} n21ijimage(i,j)=n1in1jimage(i,j)

举个例子展开写会容易理解,比如3*3的patch,共9个数:
m e a n ( a i j ) = 1 9 ( a 00 + a 01 + a 02 + a 10 + a 11 + a 12 + a 20 + a 21 + a 22 ) = 1 3 ( 1 3 ( a 00 + a 01 + a 02 ) + 1 3 ( a 10 + a 11 + a 12 ) + 1 3 ( a 20 + a 21 + a 22 ) ) = 1 3 ( 1 3 ∑ j a 0 j + 1 3 ∑ j a 1 j + 1 3 ∑ j a 2 j ) = 1 3 ∑ i ( 1 3 ∑ j a i j ) \begin{aligned} mean(a_{ij}) &= \cfrac{1}{9} (a_{00} + a_{01} + a_{02} + a_{10} + a_{11} + a_{12} + a_{20} + a_{21} + a_{22}) \\[2ex] &= \cfrac{1}{3} (\cfrac{1}{3} (a_{00} + a_{01} + a_{02}) + \cfrac{1}{3} (a_{10} + a_{11} + a_{12} ) + \cfrac{1}{3} (a_{20} + a_{21} + a_{22})) \\[2ex] &= \cfrac{1}{3} (\cfrac{1}{3} \sum_j {a_{0j}} + \cfrac{1}{3} \sum_j {a_{1j}} + \cfrac{1}{3} \sum_j {a_{2j}}) \\[2ex] &= \cfrac{1}{3} \sum_i (\cfrac{1}{3} \sum_j {a_{ij}}) \end{aligned} mean(aij)=91(a00+a01+a02+a10+a11+a12+a20+a21+a22)=31(31(a00+a01+a02)+31(a10+a11+a12)+31(a20+a21+a22))=31(31ja0j+31ja1j+31ja2j)=31i(31jaij)

这种方式的计算量:

  • 2 ∗ r o w s ∗ c o l s ∗ n 2 * rows * cols * n 2rowscolsn 次加法,相对于暴力版本,内层循环降低了一个数量级的算力,变成 o ( n ) o(n) o(n)
  • 2 ∗ r o w s ∗ c o l s 2 * rows * cols 2rowscols 次除法

3. 行列分离优化版

第二种实现可以对求和做进一步优化。在单个维度做求和时,可以对当前一维patch的和做一个缓存,当中心点移动后,减去弹出像素的值,加上新增像素的值,这样就避免了重复性求和操作。

这种方案需要对patch的和做一个初始化和缓存,该方案的计算量为:

  • 2 ∗ r o w s ∗ c o l s 2 * rows * cols 2rowscols 次减法, 2 ∗ r o w s ∗ c o l s 2 * rows * cols 2rowscols 次加法,内层循环的计算变为 o ( 1 ) o(1) o(1)了,进一步降低了一个数量级算力。
  • 2 ∗ r o w s ∗ c o l s 2 * rows * cols 2rowscols 次除法

代码

上面做计算量估计的时候没有考虑边界条件,在具体代码实现的时候需要仔细处理边界,防止数组访问越界。

代码同时跟opencv做了个效果和性能的对比,第三种方式虽然仍然比opencv慢,但性能基本处于同一量级了,opencv可能还做了一些其他跟算法无关的优化,比如指令集、并行化之类的。

注意:下面为了方便比较,opencv boxFilter的边界处理参数选择BORDER_CONSTANT。即使是边界处patch不满覆盖的情况下,opencv仍然除以 n 2 n^2 n2,也就是说除以的数字有点大了,所以边界会逐渐发黑,特别是kernel_size(对应于radius)比较大时候视觉效果更明显。

#include 
#include 
#include 
#include 
#include 


using namespace std;
using namespace cv;


Mat BoxFilter_1(const Mat& image, int radius);
Mat BoxFilter_2(const Mat& image, int radius);
Mat BoxFilter_3(const Mat& image, int radius);


int main()
{
    clock_t time_beg;
    clock_t time_end;

    Mat image = imread("lena_std.bmp", IMREAD_UNCHANGED);
    image.convertTo(image, CV_32FC3);
    image /= 255.0f;

    int radius = 9;
    int ksize = radius * 2 + 1;

    Mat image_box_filter_cv;
    time_beg = clock();
    boxFilter(image, image_box_filter_cv, -1, Size(ksize, ksize), Point(-1, -1), true, BORDER_CONSTANT);
    time_end = clock();
    cout << "box-filter-cv time cost: " << time_end - time_beg << endl;

    Mat image_box_filter_1 = BoxFilter_1(image, radius);
    Mat image_box_filter_2 = BoxFilter_2(image, radius);
    Mat image_box_filter_3 = BoxFilter_3(image, radius);

    

    namedWindow("original_image", 1);
    imshow("original_image", image);
    namedWindow("cv_box_filter", 1);
    imshow("cv_box_filter", image_box_filter_cv);
    namedWindow("box_filter-1", 1);
    imshow("box_filter-1", image_box_filter_1);
    namedWindow("box_filter-2", 1);
    imshow("box_filter-2", image_box_filter_2);
    namedWindow("box_filter-3", 1);
    imshow("box_filter-3", image_box_filter_3);

    Mat diff;
    cv::absdiff(image_box_filter_2, image_box_filter_3, diff);
    namedWindow("diff", 1);
    imshow("diff", 50 * diff);

    waitKey(0);
    destroyAllWindows();

    return 0;
}


Mat BoxFilter_1(const Mat& image, int radius)
{
    int cols = image.cols;
    int rows = image.rows;
    int channels = image.channels();
    int row_bound = rows - 1;
    int col_bound = cols - 1;
    Mat result(rows, cols, CV_32FC3);

    clock_t time_beg;
    clock_t time_end;
    time_beg = clock();

    for (int row = 0; row < rows; ++row) {
        int row_beg = max(row - radius, 0);
        int row_end = min(row + radius, row_bound);
        for (int col = 0; col < cols; ++col) {
            int col_beg = max(col - radius, 0);
            int col_end = min(col + radius, col_bound);

            vector<float> sums(channels, 0.0f);
            int count = 0;
            for (int i = row_beg; i <= row_end; ++i) {
                for (int j = col_beg; j <= col_end; ++j) {
                    count++;
                    for (int k = 0; k < channels; ++k) {
                        sums[k] += image.at<Vec3f>(i, j)[k];
                    }
                }
            }

            for (int k = 0; k < channels; ++k) {
                result.at<Vec3f>(row, col)[k] = sums[k] / static_cast<float>(count);

                // opencv BORDER_CONSTANT:
                /*float COUNT = (float)(2 * radius + 1) * (2 * radius + 1);
                result.at(row, col)[k] = sums[k] / COUNT;*/
            }
        }
    }
    result = cv::max(cv::min(result, 1.0), 0.0);
    time_end = clock();
    cout << "box-filter-1 time cost: " << time_end - time_beg << endl;

    return result;
}


Mat BoxFilter_2(const Mat& image, int radius)
{
    int cols = image.cols;
    int rows = image.rows;
    int channels = image.channels();
    int row_bound = rows - 1;
    int col_bound = cols - 1;
    Mat result(rows, cols, CV_32FC3);

    clock_t time_beg;
    clock_t time_end;
    time_beg = clock();

    // compute mean for row-wise
    Mat row_result(rows, cols, CV_32FC3);
    for (int row = 0; row < rows; ++row) {
        for (int col = 0; col < cols; ++col) {
            int col_beg = max(col - radius, 0);
            int col_end = min(col + radius, col_bound);

            vector<float> sums(channels, 0.0f);
            int count = 0;
            for (int j = col_beg; j <= col_end; ++j) {
                count++;
                for (int k = 0; k < channels; ++k) {
                    sums[k] += image.at<Vec3f>(row, j)[k];
                }
            }
            for (int k = 0; k < channels; ++k) {
                row_result.at<Vec3f>(row, col)[k] = sums[k] / static_cast<float>(count);
            }
        }
    }

    // compute mean for column-wise
    for (int col = 0; col < cols; ++col) {
        for (int row = 0; row < rows; ++row) {
            int row_beg = max(row - radius, 0);
            int row_end = min(row + radius, row_bound);

            vector<float> sums(channels, 0.0f);
            int count = 0;
            for (int i = row_beg; i <= row_end; ++i) {
                count++;
                for (int k = 0; k < channels; ++k) {
                    sums[k] += row_result.at<Vec3f>(i, col)[k];
                }
            }
            for (int k = 0; k < channels; ++k) {
                result.at<Vec3f>(row, col)[k] = sums[k] / static_cast<float>(count);
            }
        }
    }
    result = cv::max(cv::min(result, 1.0), 0.0);
    time_end = clock();
    cout << "box-filter-2 time cost: " << time_end - time_beg << endl;

    return result;
}


Mat BoxFilter_3(const Mat& image, int radius)
{
    int cols = image.cols;
    int rows = image.rows;
    int channels = image.channels();
    Mat result(rows, cols, CV_32FC3);

    clock_t time_beg;
    clock_t time_end;
    time_beg = clock();

    // compute mean for row-wise
    Mat row_result(rows, cols, CV_32FC3);
    for (int row = 0; row < rows; ++row) {
        // initialize sums for row
        vector<float> sums(channels, 0.0f);
        int count = 0;
        for (int col = 0; col < radius; ++col) {
            if (col < cols) {
                count++;
                for (int k = 0; k < channels; ++k) {
                    sums[k] += image.at<Vec3f>(row, col)[k];
                }
            }
        }
        // process row
        for (int col = 0; col < cols; ++col) {
            int left = col - radius - 1;
            int right = col + radius;
            if (left >= 0) {
                count--;
                for (int k = 0; k < channels; ++k) {
                    sums[k] -= image.at<Vec3f>(row, left)[k];
                }
            }
            if (right < cols) {
                count++;
                for (int k = 0; k < channels; ++k) {
                    sums[k] += image.at<Vec3f>(row, right)[k];
                }
            }
            for (int k = 0; k < channels; ++k) {
                row_result.at<Vec3f>(row, col)[k] = sums[k] / static_cast<float>(count);
            }
        }
    }

    // compute mean for column-wise
    for (int col = 0; col < cols; ++col) {
        // initialize sums for column
        vector<float> sums(channels, 0.0f);
        int count = 0;
        for (int row = 0; row < radius; ++row) {
            if (row < rows) {
                count++;
                for (int k = 0; k < channels; ++k) {
                    sums[k] += row_result.at<Vec3f>(row, col)[k];
                }
            }
        }
        // process column
        for (int row = 0; row < rows; ++row) {
            int up = row - radius - 1;
            int down = row + radius;
            if (up >= 0) {
                count--;
                for (int k = 0; k < channels; ++k) {
                    sums[k] -= row_result.at<Vec3f>(up, col)[k];
                }
            }
            if (down < rows) {
                count++;
                for (int k = 0; k < channels; ++k) {
                    sums[k] += row_result.at<Vec3f>(down, col)[k];
                }
            }
            for (int k = 0; k < channels; ++k) {
                result.at<Vec3f>(row, col)[k] = sums[k] / static_cast<float>(count);
            }
        }
    }
    result = cv::max(cv::min(result, 1.0), 0.0);
    time_end = clock();
    cout << "box-filter-3 time cost: " << time_end - time_beg << endl;

    return result;
}

你可能感兴趣的:(opencv,数字图像处理,c++,计算机视觉,图像处理)