手把手教程:深度学习入门项目MNIST手写数字分类任务

基于Pytorch实现MNIST手写数字分类任务

    • 前言
    • 实现细节
    • 问题讨论
    • 参考资料

运行环境
系统:Win10 CPU
解释器:Python
依赖包:Anaconda Pytorch

前言


本文无需了解任何AI先验知识(当然有更好),快速入门AI基本脉络,手把手教你一步步搭建神经网络,并解决一个分类手写数字的实际问题。

基本流程:

  • 搭建环境,导入依赖包
  • 下载MNIST数据集,并做预处理
  • Dataset转化为Pytorch能识别的DataLoader
  • 构建神经网络,设置各层神经元及优化方式
  • 训练神经网络,进入学习阶段
  • 测试神经网络,进入推理阶段

实现细节


搭建环境,安装依赖包

!conda install pytorch-cpu -c pytorch    # 导入pytorch依赖包
!pip install torchvision                 #  pytorch关于图像视频的包

导入依赖包

import torch
import torchvision
from sklearn.datasets import fetch_openml
import matplotlib.pyplot as plt
# % matplotlib inline

import torch
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import train_test_split

from torch import nn

import numpy as np

数据集预处理

# pre-processing

mnist = fetch_openml('mnist_784', data_home='.')
X = mnist.data / 255
y = mnist.target
# dataloader
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=1/7, random_state=0)  # 数据切分,训练集:测试集=6:1

X_train = np.array(X_train)          # 将list转为numpy格式
X_test = np.array(X_test)
y_train = list(map(int, y_train))    # 将label的str类型转为int
y_test = list(map(int, y_test))
X_train = torch.Tensor(X_train)      # 转为浮点tensor
X_test = torch.Tensor(X_test)
y_train = torch.LongTensor(y_train)  # 转为整型tensor
y_test = torch.LongTensor(y_test)

ds_train = TensorDataset(X_train, y_train)  # 转为Dataset
ds_test = TensorDataset(X_test, y_test)

# 转为Pytorch可以直接操作彻底DataLoader
loader_train = DataLoader(ds_train, batch_size=(64), shuffle=True)
loader_test = DataLoader(ds_test, batch_size=(64), shuffle=True)

搭建神经网络,Keras风格,选其一即可

# build nn with keras sytle
model = nn.Sequential()                             # 获取网络模型句柄
model.add_module('fc1', nn.Linear(28*28*1, 100))    # 第一层神经元,输入层
model.add_module('relu1', nn.ReLU())                # 第一层激活函数
model.add_module('fc2', nn.Linear(100, 100))        # 第二层神经元,中间层
model.add_module('relu2', nn.ReLU())                # 第二层激活函数
model.add_module('fc3', nn.Linear(100, 10))         # 第三层神经元,输出层
print(model)

输出结果如下:

Sequential(
(fc1): Linear(in_features=784, out_features=100, bias=True)
(relu1): ReLU()
(fc2): Linear(in_features=100, out_features=100, bias=True)
(relu2): ReLU()
(fc3): Linear(in_features=100, out_features=10, bias=True)
)

搭建神经网络,Chainer风格,选其一即可

# build nn with chainer style

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    
    def __init__(self, n_in, n_mid, n_out):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(n_in, n_mid)
        self.fc2 = nn.Linear(n_mid, n_mid)
        self.fc3 = nn.Linear(n_mid, n_out)
        
    def forward(self, x):
        h1 = F.relu(self.fc1(x))
        h2 = F.relu(self.fc2(h1))
        output = self.fc3(h2)
        return output
    
    
model = Net(n_in=28*28*1, n_mid=100, n_out=10)
print(model)

输出结果如下:

Net(
(fc1): Linear(in_features=784, out_features=100, bias=True)
(fc2): Linear(in_features=100, out_features=100, bias=True)
(fc3): Linear(in_features=100, out_features=10, bias=True)
)

损失函数设置

# loss function

from torch import optim

loss_fn = nn.CrossEntropyLoss()                       # 选取交叉熵作为误差函数
optimizer = optim.Adam(model.parameters(), lr=0.01)   # 设置优化器参数,学习率0.01

训练神经网络,设计学习阶段和推理阶段

# learning and predict process

# 训练阶段
def train(epoch):
    model.train()
    
    for data, targets in loader_train:
        optimizer.zero_grad()
        outputs = model(data)
        loss = loss_fn(outputs, targets)
        loss.backward()
        optimizer.step()
        
    print("epoch{}:结束\n".format(epoch))

# 推理阶段
def test():
    model.eval()
    correct = 0
    
    with torch.no_grad():
        for data, targets in loader_test:
            outputs = model(data)
            _, predicted = torch.max(outputs.data, 1)
            correct += predicted.eq(targets.data.view_as(predicted)).sum()
    
    data_sum = len(loader_test.dataset)
    print("\n 测试数据的准确率 : {}/{} ({:.0f}%)\n".
         format(correct, data_sum, 100. * correct / data_sum))
        
# 训练前的分类准确率
test()
# 训练3个epoch过程
for epoch in range(3):
    train(epoch)
# 训练后的分类准确率
test()


输出结果如下:

测试数据的准确率 : 981/10000 (10%)
epoch0:结束
epoch1:结束
epoch2:结束
测试数据的准确率 : 9596/10000 (96%)

推理分类特定图片

# predict particular picture

# 推理第8505张图片的数字类别
index = 8505
model.eval()
data = X_test[index]

output = model(data)
_, predicted = torch.max(output.data, 0)
print("预测结果是{}".format(predicted))

X_test_show = (X_test[index]).numpy()
plt.imshow(X_test_show.reshape(28, 28), cmap='gray')
print("这一图像数据的正确标签是{:.0f}".format(y_test[index]))

输出结果如下:

测试数据的准确率 : 9548/10000 (95%)
预测结果是0
这一图像数据的正确标签是0
手把手教程:深度学习入门项目MNIST手写数字分类任务_第1张图片

问题讨论


DataLoader的用途?

  • pytorch与外界数据沟通的桥梁
  • dataloader能供pytorch直接使用
  • dataloader作为python自带的numpy数据类型中转
  • 过程:numpy -> tensor -> dataset -> dataloader

遗留:

  • _,predict = torch.max(), 下划线_是啥意思?
  • conda和spyder的环境依赖关系是?

参考资料


  1. 边做边学深度强化学习,link

声明:本文主体代码来自于书籍《边做边学深度强化学习》,只是在手敲其代码的过程中,添加一些自己的理解,详情可以查阅对应章节。

你可能感兴趣的:(深度学习,深度学习,分类,pytorch)