一文搞懂图像二值化算法

传统的机器视觉通常包括两个步骤:预处理和物体检测。而沟通二者的桥梁则是图像分割(Image Segmentation[1]。图像分割通过简化或改变图像的表示形式,使得图像更易于分析。

举个例子,食品加工厂新进了一批肉鸡,想通过视觉检测其美味程度。机器在预处理优化完图像之后,要先把图像中的鸡肉和背景分开,并对感兴趣的区域单独进行分析,才能做出快速准确的判断。

食品加工厂的视觉处理

然而,图像分割对愚蠢的AI来说并不容易。聪明的人类一眼就能看出下图中哪些东西能吃、哪些不能吃。但计算机要把这些东西分开却得花费一番功夫。

原图

图像分割结果

最简单的图像分割方法是二值化(Binarization)

图像二值化( Image Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。二值图像每个像素只有两种取值:要么纯黑,要么纯白。

彩色图、灰度图、二值图对比

由于二值图像数据足够简单,许多视觉算法都依赖二值图像。通过二值图像,能更好地分析物体的形状和轮廓。二值图像也常常用作原始图像的掩模(又称遮罩、蒙版,Mask):它就像一张部分镂空的纸,把我们不感兴趣的区域遮掉。进行二值化有多种方式,其中最常用的就是采用阈值法(Thresholding进行二值化。

在计算机视觉里,一般用矩阵来表示图像。也就是说,无论你的图片看上去多么好吃,对计算机来说都不过是个矩阵而已。

在这个矩阵里,每一个像素就是矩阵中的一个元素。在三通道的彩色图像中,这个元素是由三个数字组成的元组。

彩色三通道图像

而对于单通道的灰度图像来说,这个元素就是一个数字。这个数字代表了图像在这个点的亮度,数字越大像素点也就越亮,在常见的八位单通道色彩空间中,0代表全黑,255代表全白。

单通道的灰度图

阈值法是指选取一个数字,大于它就视为全白,小于它就视为全黑。就像教室里的灯管开关,我们轻轻地推动它,如果突然间超过了某个阈值,灯就啪的一声亮了。

根据阈值选取方式的不同,可以分为全局阈值和局部阈值。

1、全局阈值(Global Method)

全局阈值,指的是对整个图像中的每一个像素都选用相同的阈值。我们可以在Photoshop的图像—调整—阈值里体验这一操作:

Photoshop里的阈值

可以看到阈值色阶从1到255的移动过程中,图像变黑的区域越来越多。当阈值数字在某个特定范围内的时候,红米肠的轮廓清晰可辨。

正确的二值化使红米肠轮廓清晰可辨

在生产线环境下,光照是已知的,常常会设定一个固定的数字来作为全局阈值。但是在室外或者机器人比赛中,光照条件往往更加复杂。

同样是奥利奥冰激凌,在白天和晚上,摄像头看到的画面可能不太一样,常数阈值无法同时适应这两种情况。

明暗不同的画面

对于画面比较暗的晚上,我们需要一个比较低的阈值,比如说设定阈值为50,它在晚上能很清楚地把黑白两种颜色分开,但是到了白天就是一片白(左边);如果我们把阈值设置得比较高,比如说172,在白天能顺利分割,但在晚上就是一片黑(右边)。我们需要能够适应复杂环境的算法。

左边阈值=50,右边阈值=172

其实,稍作分析我们可以发现,这张图像中的颜色差异还是比较明显的,只有深浅两种颜色。因此,无论是在白天还是黑夜,它的色阶直方图都应该是两个明显的波峰,分别代表深色和浅色的区域。只是色阶直方图在白天会整体向右偏移,而在夜晚整体向左偏移。

。。。。。。。。。。。。。。。。。

版权原因,完整文章,请参考如下:一文搞懂图像二值化算法

你可能感兴趣的:(其他,算法,计算机视觉,opencv)