有了bert,roberta还会远吗,目前pytorch transformer上已经放出了bertForTokenClassification
然而,在工业界前进的我们,不能忍受如此慢速的更新
于是我们自己写好了robertaForTokenClassicification类,准备使用了!
以下是代码
class RobertaForTokenClassification(BertPreTrainedModel):
r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the token classification loss.
Indices should be in ``[0, ..., config.num_labels - 1]``.
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification loss.
**scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
Classification scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForTokenClassification.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, scores = outputs[:2]
"""
def __init__(self, config):
super(RobertaForTokenClassification, self).__init__(config)
self.num_labels = config.num_labels
print('we have labels = ',self.num_labels)
self.roberta = RobertaModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
position_ids=None, head_mask=None):
outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
attention_mask=attention_mask, head_mask=head_mask)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
#(bs,seq length)
active_loss = attention_mask.view(-1) == 1
# active loss (400 = bs * seq) True False
active_logits = logits.view(-1, self.num_labels)[active_loss]
# active logits shape(213,num_labels)
active_labels = labels.view(-1)[active_loss]
# active_labels shape(213)
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), scores, (hidden_states), (attentions)
#
跟bert的思路几乎完全一样,感兴趣的小伙伴自行阅读我之前写的博文就行。
然后我们很容易的想到后置网络可以接crf,那么针对上面的代码小小改动以下我们就得到了RobertaCrf
from torchcrf import CRF
class RobertaCrf(BertPreTrainedModel):
def __init__(self, config):
super(RobertaCrf, self).__init__(config)
self.num_labels = config.num_labels
print('roberta crf have labels = ',self.num_labels)
self.roberta = RobertaModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
self.crf_model = CRF(self.num_labels).to('cuda')
self.apply(self.init_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
position_ids=None, head_mask=None):
outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
attention_mask=attention_mask, head_mask=head_mask)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
tag_logits = self.classifier(sequence_output)
logits = self.crf_model.decode(tag_logits.transpose(0, 1))
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
active_loss = attention_mask.view(-1)== 1
reshape_active_loss = active_loss.reshape_as(attention_mask)
if labels is not None:
loss = -self.crf_model(tag_logits.transpose(0, 1), labels.transpose(0, 1),reshape_active_loss.transpose(0, 1), reduction='sum')
outputs = (loss,) + outputs
# else:
# logits = self.crf_model.decode(sequence_output.transpose(0, 1))
return outputs # (loss), scores, (hidden_states), (attentions)