对比学习Python实现

对比学习是一种通过对比正反两个例子来学习表征的自监督学习方法。对于自监督对比学习,下一个等式是对比损失:

L i , j = − log ⁡ e x p ( z i ⋅ z j / τ ) ∑ k = 1 , k ≠ i 2 N e x p ( z i ⋅ z k / τ ) \mathcal{L}_{i,j} = - \log \frac{exp(\textbf{z}_i \cdot \textbf{z}_j / \tau)}{\sum_{k=1,k\neq i}^{2N}exp(\textbf{z}_i \cdot \textbf{z}_k / \tau)} Li,j=logk=1,k=i2Nexp(zizk/τ)exp(zizj/τ)

在很多情况下,对比学习只需要对每一个样本生成一个正样本,同一个batch内的其他样本作为负样本,实现如下:

def contrastive_loss(x, x_aug, T):
    """
    :param x: the hidden vectors of original data
    :param x_aug: the positive vector of the auged data
    :param T: temperature
    :return: loss
    """
    batch_size, _ = x.size()
    x_abs = x.norm(dim=1)
    x_aug_abs = x_aug.norm(dim=1)

    sim_matrix = torch.einsum('ik,jk->ij', x, x_aug) / torch.einsum('i,j->ij', x_abs, x_aug_abs)
    sim_matrix = torch.exp(sim_matrix / T)
    pos_sim = sim_matrix[range(batch_size), range(batch_size)]
    loss = pos_sim / (sim_matrix.sum(dim=1) - pos_sim)
    loss = - torch.log(loss).mean()
    return loss

如果要用生成的负样本进行对比,代码如下:

def info_nce_loss(self, features):
    labels = torch.cat([torch.arange(self.args.batch_size) for i in range(self.args.n_views)], dim=0)
    labels = (labels.unsqueeze(0) == labels.unsqueeze(1)).float()
    labels = labels.to(self.args.device)

    features = F.normalize(features, dim=1)

    similarity_matrix = torch.matmul(features, features.T)
    # assert similarity_matrix.shape == (
    #     self.args.n_views * self.args.batch_size, self.args.n_views * self.args.batch_size)
    # assert similarity_matrix.shape == labels.shape

    # discard the main diagonal from both: labels and similarities matrix
    mask = torch.eye(labels.shape[0], dtype=torch.bool).to(self.args.device)
    labels = labels[~mask].view(labels.shape[0], -1)
    similarity_matrix = similarity_matrix[~mask].view(similarity_matrix.shape[0], -1)
    # assert similarity_matrix.shape == labels.shape

    # select and combine multiple positives
    positives = similarity_matrix[labels.bool()].view(labels.shape[0], -1)

    # select only the negatives the negatives
    negatives = similarity_matrix[~labels.bool()].view(similarity_matrix.shape[0], -1)

    logits = torch.cat([positives, negatives], dim=1)
    labels = torch.zeros(logits.shape[0], dtype=torch.long).to(self.args.device)

    logits = logits / self.args.temperature
    return logits, labels

self.criterion = torch.nn.CrossEntropyLoss()
loss = self.criterion(logits, labels)

更多内容访问 omegaxyz.com
网站所有代码采用Apache 2.0授权
网站文章采用知识共享许可协议BY-NC-SA4.0授权
© 2022 • OmegaXYZ-版权所有 转载请注明出处

你可能感兴趣的:(算法,python,机器学习,python,pytorch,深度学习)