Tensorflow学习笔记(三):神经网络八股

本文是个人的学习笔记,是跟随北大曹健老师的视频课学习的
附:bilibili课程链接 和 MOOC课程链接 以及 源码下载链接 (提取码:mocm)

文章目录

  • 一、神经网络搭建八股:六步法
    • 1. `import`
    • 2. 导入dataset
    • 3. `model = tf.keras.models.Sequential([网络结构])`:描述各层网络
      • 拉直层
      • 全连接层
      • 卷积层
      • LSTM层
    • 4. `model.compile`:配置训练方法
      • 调用格式
      • optimizer=
      • loss=
      • metrics=
    • 5. `model.fit`:训练
      • 调用格式
    • 6. `model.summary`:打印网络结构、参数统计
      • 调用格式
  • 二、举例与讨论
    • 1. 复现:iris分类代码
      • (1)搭建网络八股sequential进行分类
      • (2)搭建网络八股class进行分类
    • 2. MNIST数据集及分类
      • (1)认识数据集
      • (2)搭建神经网络进行手写数字识别
    • 3. 练习:Fashion数据集及分类
      • (1)认识数据集
      • (2)搭建神经网络训练
  • 三、网络八股功能扩展
    • 复盘六步法
      • (1)总结
      • (2)限制
    • 1. 自制数据集
      • 功能代码实现
      • 八股修改
    • 2. 数据增强
      • 核心函数
      • 相关代码
      • 结果说明
    • 3. 断点续训
      • 代码实现
      • 使用效果
    • 4. 参数提取
      • 直接查看
      • 保存本地
    • 5. Acc/Loss可视化
      • 代码实现
      • 结果展示
  • 四、从训练到实际
    • 训练源码
    • 应用源码
    • 使用效果

一、神经网络搭建八股:六步法

1. import

2. 导入dataset

3. model = tf.keras.models.Sequential([网络结构]):描述各层网络

拉直层

  • 调用代码:tf.keras.layers.Flatten()
  • 不含计算,仅仅形状转换,把输入特征 一维数组

全连接层

  • 调用代码:tf.keras.layers.Dense(神经元个数, activation=激活函数, kernel_regularizer=正则化方式)
  • 激活函数relu, softmax, sigmoid, tanh
  • 正则化方式tf.keras.regularizers.l1(), tf.keras.regularizers.l2()

卷积层

  • 调用代码:tf.keras.layers.Conv2D(filters=卷积核个数, kernel_size=卷积核尺寸, strides=卷积步长, padding="valid" or "same")

LSTM层

  • 调用代码:tf.keras.layers.LSTM()

4. model.compile:配置训练方法

调用格式

  • model.compile(optimizer=优化器, loss=损失函数, metrics=["准确率"])

optimizer=

  • 'sgd' or tf.keras.optimizers.SGD(lr=, momentum=)
  • 'adagrad' or tf.keras.optimizers.Adagrad(lr=)
  • 'adadelta' or tf.keras.optimizers.Adadelta(lr=)
  • 'adam' or tf.keras.optimizers.Adam(lr=, beta_1=0.9, beta_2=0.999)

loss=

  • 'mse' or tf.keras.losses.MeanSquaredError()
  • 'sparse_categorical_crossentropy' or tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)输出前经过概率分布为False,没有则为True

metrics=

根据数据标签 y y y和预测值 y ^ \hat y y^的形式确定参数值

  • 'accuracy' y y y y ^ \hat y y^都是数值,如 y = [ 1 ] ,   y ^ = [ 1 ] y=[1], ~\hat y=[1] y=[1], y^=[1]
  • 'categorical_accuracy' y y y y ^ \hat y y^都是独热编码(概率分布),如 y = [ 0 , 1 , 0 ] ,   y ^ = [ 0.256 , 0.695 , 0.048 ] y=[0,1,0], ~\hat y=[0.256,0.695,0.048] y=[0,1,0], y^=[0.256,0.695,0.048]
  • 'sparse_categorical_accuracy' y y y是数值, y ^ \hat y y^是独热编码(概率分布),如 y = [ 1 ] ,   y ^ = [ 0.256 , 0.695 , 0.048 ] y=[1],~ \hat y=[0.256,0.695,0.048] y=[1], y^=[0.256,0.695,0.048]

5. model.fit:训练

调用格式

  • model.fit(训练集输入特征, 训练集标签, batch_size=, epochs=, validation_data=(测试集的输入特征, 测试集的标签), validation_split=从训练集划分多少比例给测试集, validation_freq=多少次epoch测试一次)

6. model.summary:打印网络结构、参数统计

调用格式

  • model.summary()

二、举例与讨论

看到这里已经有些迷茫了。。。所以通过一个例子来看看是如何“搭积木”的

1. 复现:iris分类代码

(1)搭建网络八股sequential进行分类

  • 源码
# import
import numpy as np
import tensorflow as tf
from sklearn import datasets

# 导入dataset
iris = datasets.load_iris()
x = iris.data
y = iris.target

np.random.seed(76)
np.random.shuffle(x)
np.random.seed(76)
np.random.shuffle(y)
tf.random.set_seed(76)

# model = models.Sequential
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(
        3,
        activation='softmax',
        kernel_regularizer=tf.keras.regularizers.l2()
    )
])

# model.compile
model.compile(
    optimizer=tf.keras.optimizers.SGD(lr=0.1),
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
    metrics=['sparse_categorical_accuracy']
)

# model.fit
model.fit(
    x, y, batch_size=32, epochs=500,
    validation_split=0.2,
    validation_freq=20
)

# model.summary
model.summary()
  • 结果展示
Epoch 1/500
4/4 [==============================] - 0s 5ms/step - loss: 4.7593 - sparse_categorical_accuracy: 0.3417
Epoch 2/500
4/4 [==============================] - 0s 0s/step - loss: 3.2841 - sparse_categorical_accuracy: 0.3417
Epoch 3/500
4/4 [==============================] - 0s 0s/step - loss: 2.0309 - sparse_categorical_accuracy: 0.3417
Epoch 4/500
4/4 [==============================] - 0s 0s/step - loss: 1.2765 - sparse_categorical_accuracy: 0.3500
Epoch 5/500
4/4 [==============================] - 0s 0s/step - loss: 0.9750 - sparse_categorical_accuracy: 0.3750
Epoch 6/500
4/4 [==============================] - 0s 0s/step - loss: 0.8396 - sparse_categorical_accuracy: 0.4583
Epoch 7/500
4/4 [==============================] - 0s 5ms/step - loss: 0.7756 - sparse_categorical_accuracy: 0.6000
Epoch 8/500
4/4 [==============================] - 0s 0s/step - loss: 0.7225 - sparse_categorical_accuracy: 0.4250
Epoch 9/500
4/4 [==============================] - 0s 0s/step - loss: 0.6942 - sparse_categorical_accuracy: 0.4667
Epoch 10/500
4/4 [==============================] - 0s 5ms/step - loss: 0.6758 - sparse_categorical_accuracy: 0.4167
Epoch 11/500
4/4 [==============================] - 0s 0s/step - loss: 0.6634 - sparse_categorical_accuracy: 0.4583
Epoch 12/500
4/4 [==============================] - 0s 0s/step - loss: 0.6571 - sparse_categorical_accuracy: 0.4667
Epoch 13/500
4/4 [==============================] - 0s 0s/step - loss: 0.6481 - sparse_categorical_accuracy: 0.4917
Epoch 14/500
4/4 [==============================] - 0s 0s/step - loss: 0.6457 - sparse_categorical_accuracy: 0.4417
Epoch 15/500
4/4 [==============================] - 0s 0s/step - loss: 0.6406 - sparse_categorical_accuracy: 0.4667
Epoch 16/500
4/4 [==============================] - 0s 0s/step - loss: 0.6432 - sparse_categorical_accuracy: 0.4833
Epoch 17/500
4/4 [==============================] - 0s 5ms/step - loss: 0.6324 - sparse_categorical_accuracy: 0.5750
Epoch 18/500
4/4 [==============================] - 0s 0s/step - loss: 0.6320 - sparse_categorical_accuracy: 0.4917
Epoch 19/500
4/4 [==============================] - 0s 0s/step - loss: 0.6275 - sparse_categorical_accuracy: 0.4750
Epoch 20/500
4/4 [==============================] - 0s 52ms/step - loss: 0.6239 - sparse_categorical_accuracy: 0.5583 - val_loss: 0.6717 - val_sparse_categorical_accuracy: 0.3667
...
Epoch 481/500
4/4 [==============================] - 0s 0s/step - loss: 0.3849 - sparse_categorical_accuracy: 0.9750
Epoch 482/500
4/4 [==============================] - 0s 0s/step - loss: 0.3806 - sparse_categorical_accuracy: 0.9750
Epoch 483/500
4/4 [==============================] - 0s 0s/step - loss: 0.3830 - sparse_categorical_accuracy: 0.9833
Epoch 484/500
4/4 [==============================] - 0s 0s/step - loss: 0.3804 - sparse_categorical_accuracy: 0.9833
Epoch 485/500
4/4 [==============================] - 0s 0s/step - loss: 0.3829 - sparse_categorical_accuracy: 0.9833
Epoch 486/500
4/4 [==============================] - 0s 0s/step - loss: 0.3807 - sparse_categorical_accuracy: 0.9750
Epoch 487/500
4/4 [==============================] - 0s 0s/step - loss: 0.3802 - sparse_categorical_accuracy: 0.9833
Epoch 488/500
4/4 [==============================] - 0s 0s/step - loss: 0.3817 - sparse_categorical_accuracy: 0.9833
Epoch 489/500
4/4 [==============================] - 0s 0s/step - loss: 0.3805 - sparse_categorical_accuracy: 0.9750
Epoch 490/500
4/4 [==============================] - 0s 5ms/step - loss: 0.3798 - sparse_categorical_accuracy: 0.9833
Epoch 491/500
4/4 [==============================] - 0s 0s/step - loss: 0.3807 - sparse_categorical_accuracy: 0.9833
Epoch 492/500
4/4 [==============================] - 0s 0s/step - loss: 0.3801 - sparse_categorical_accuracy: 0.9833
Epoch 493/500
4/4 [==============================] - 0s 0s/step - loss: 0.3793 - sparse_categorical_accuracy: 0.9833
Epoch 494/500
4/4 [==============================] - 0s 0s/step - loss: 0.3817 - sparse_categorical_accuracy: 0.9917
Epoch 495/500
4/4 [==============================] - 0s 0s/step - loss: 0.3800 - sparse_categorical_accuracy: 0.9833
Epoch 496/500
4/4 [==============================] - 0s 0s/step - loss: 0.3793 - sparse_categorical_accuracy: 0.9750
Epoch 497/500
4/4 [==============================] - 0s 5ms/step - loss: 0.3811 - sparse_categorical_accuracy: 0.9667
Epoch 498/500
4/4 [==============================] - 0s 0s/step - loss: 0.3790 - sparse_categorical_accuracy: 0.9750
Epoch 499/500
4/4 [==============================] - 0s 0s/step - loss: 0.3791 - sparse_categorical_accuracy: 0.9750
Epoch 500/500
4/4 [==============================] - 0s 10ms/step - loss: 0.3787 - sparse_categorical_accuracy: 0.9750 - val_loss: 0.4051 - val_sparse_categorical_accuracy: 0.9667
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 dense (Dense)               (None, 3)                 15        
                                                                 
=================================================================
Total params: 15
Trainable params: 15
Non-trainable params: 0
_________________________________________________________________

使用sequential的局限:无法实现带有跳连的非顺序网络结构
解决方法:使用class搭建网络

(2)搭建网络八股class进行分类

  • 源码
    仅需将上述源码的model = models.Sequential部分更改为如下的class model即可
# class model
class irisModel(tf.keras.Model):
# 构建类
    def __init__(self):
        super(irisModel, self).__init__()
        # 定义网络结构块
        self.layer = tf.keras.layers.Dense(
            3,
            activation='softmax',
            kernel_regularizer=tf.keras.regularizers.l2()
        )

    def call(self, x):
        # 调用网络结构块,实现前向传播
        y = self.layer(x)
        return y

model = irisModel()  # 实例化对象
  • 结果展示
Epoch 1/500
4/4 [==============================] - 0s 5ms/step - loss: 1.0251 - sparse_categorical_accuracy: 0.5750
Epoch 2/500
4/4 [==============================] - 0s 0s/step - loss: 0.9047 - sparse_categorical_accuracy: 0.4917
Epoch 3/500
4/4 [==============================] - 0s 5ms/step - loss: 0.8671 - sparse_categorical_accuracy: 0.5083
Epoch 4/500
4/4 [==============================] - 0s 0s/step - loss: 0.8382 - sparse_categorical_accuracy: 0.4833
Epoch 5/500
4/4 [==============================] - 0s 0s/step - loss: 0.8366 - sparse_categorical_accuracy: 0.5083
Epoch 6/500
4/4 [==============================] - 0s 0s/step - loss: 0.8193 - sparse_categorical_accuracy: 0.4750
Epoch 7/500
4/4 [==============================] - 0s 0s/step - loss: 0.8217 - sparse_categorical_accuracy: 0.4917
Epoch 8/500
4/4 [==============================] - 0s 0s/step - loss: 0.8032 - sparse_categorical_accuracy: 0.4917
Epoch 9/500
4/4 [==============================] - 0s 0s/step - loss: 0.7979 - sparse_categorical_accuracy: 0.5000
Epoch 10/500
4/4 [==============================] - 0s 5ms/step - loss: 0.7900 - sparse_categorical_accuracy: 0.4917
Epoch 11/500
4/4 [==============================] - 0s 0s/step - loss: 0.7835 - sparse_categorical_accuracy: 0.4917
Epoch 12/500
4/4 [==============================] - 0s 0s/step - loss: 0.7804 - sparse_categorical_accuracy: 0.4917
Epoch 13/500
4/4 [==============================] - 0s 5ms/step - loss: 0.7709 - sparse_categorical_accuracy: 0.5000
Epoch 14/500
4/4 [==============================] - 0s 0s/step - loss: 0.7676 - sparse_categorical_accuracy: 0.4750
Epoch 15/500
4/4 [==============================] - 0s 0s/step - loss: 0.7609 - sparse_categorical_accuracy: 0.5083
Epoch 16/500
4/4 [==============================] - 0s 0s/step - loss: 0.7633 - sparse_categorical_accuracy: 0.4917
Epoch 17/500
4/4 [==============================] - 0s 5ms/step - loss: 0.7491 - sparse_categorical_accuracy: 0.5083
Epoch 18/500
4/4 [==============================] - 0s 0s/step - loss: 0.7477 - sparse_categorical_accuracy: 0.5167
Epoch 19/500
4/4 [==============================] - 0s 0s/step - loss: 0.7409 - sparse_categorical_accuracy: 0.4917
Epoch 20/500
4/4 [==============================] - 0s 52ms/step - loss: 0.7351 - sparse_categorical_accuracy: 0.5000 - val_loss: 0.7733 - val_sparse_categorical_accuracy: 0.4333
...
Epoch 481/500
4/4 [==============================] - 0s 5ms/step - loss: 0.3890 - sparse_categorical_accuracy: 0.9750
Epoch 482/500
4/4 [==============================] - 0s 0s/step - loss: 0.3847 - sparse_categorical_accuracy: 0.9833
Epoch 483/500
4/4 [==============================] - 0s 0s/step - loss: 0.3874 - sparse_categorical_accuracy: 0.9833
Epoch 484/500
4/4 [==============================] - 0s 5ms/step - loss: 0.3845 - sparse_categorical_accuracy: 0.9833
Epoch 485/500
4/4 [==============================] - 0s 0s/step - loss: 0.3872 - sparse_categorical_accuracy: 0.9833
Epoch 486/500
4/4 [==============================] - 0s 0s/step - loss: 0.3847 - sparse_categorical_accuracy: 0.9750
Epoch 487/500
4/4 [==============================] - 0s 0s/step - loss: 0.3844 - sparse_categorical_accuracy: 0.9833
Epoch 488/500
4/4 [==============================] - 0s 0s/step - loss: 0.3858 - sparse_categorical_accuracy: 0.9833
Epoch 489/500
4/4 [==============================] - 0s 0s/step - loss: 0.3845 - sparse_categorical_accuracy: 0.9750
Epoch 490/500
4/4 [==============================] - 0s 0s/step - loss: 0.3836 - sparse_categorical_accuracy: 0.9833
Epoch 491/500
4/4 [==============================] - 0s 0s/step - loss: 0.3848 - sparse_categorical_accuracy: 0.9833
Epoch 492/500
4/4 [==============================] - 0s 0s/step - loss: 0.3838 - sparse_categorical_accuracy: 0.9833
Epoch 493/500
4/4 [==============================] - 0s 0s/step - loss: 0.3831 - sparse_categorical_accuracy: 0.9833
Epoch 494/500
4/4 [==============================] - 0s 5ms/step - loss: 0.3857 - sparse_categorical_accuracy: 0.9750
Epoch 495/500
4/4 [==============================] - 0s 0s/step - loss: 0.3838 - sparse_categorical_accuracy: 0.9833
Epoch 496/500
4/4 [==============================] - 0s 0s/step - loss: 0.3831 - sparse_categorical_accuracy: 0.9833
Epoch 497/500
4/4 [==============================] - 0s 0s/step - loss: 0.3849 - sparse_categorical_accuracy: 0.9833
Epoch 498/500
4/4 [==============================] - 0s 5ms/step - loss: 0.3828 - sparse_categorical_accuracy: 0.9833
Epoch 499/500
4/4 [==============================] - 0s 0s/step - loss: 0.3828 - sparse_categorical_accuracy: 0.9833
Epoch 500/500
4/4 [==============================] - 0s 5ms/step - loss: 0.3822 - sparse_categorical_accuracy: 0.9750 - val_loss: 0.4033 - val_sparse_categorical_accuracy: 0.9667
Model: "iris_model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 dense (Dense)               multiple                  15        
                                                                 
=================================================================
Total params: 15
Trainable params: 15
Non-trainable params: 0
_________________________________________________________________

两种方法搭建出来的网络训练结果是相同的

2. MNIST数据集及分类

(1)认识数据集

  • 数据集在哪里?

tensorflow库中就有MNIST数据集,我们可以用如下代码导入

# 导入数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
  • 训练集和测试集是怎么组成的?

想要在MNIST数据集上训练,就首先要认识训练集和测试集是什么“样子”,print出来数据集的shape看看

# 数据集形状
print("x_train.shape:", x_train.shape)
print("y_train.shape:", y_train.shape)
print("x_test.shape:", x_test.shape)
print("y_test.shape:", y_test.shape)

结果是

x_train.shape: (60000, 28, 28)
y_train.shape: (60000,)
x_test.shape: (10000, 28, 28)
y_test.shape: (10000,)

也就是说,MNIST是由含60000个元素的训练集和含10000个元素的测试集组成的。对于每一个元素而言,对应的数据为一个2828(=784)大小的二维数组,对应的标签为一个11的数值

  • 那数据和标签到底是什么?

以训练集的第一个元素为例,我们尝试将它print出来,这用代码很容易实现

print('x_train[0]=\n{}\ny_train[0]={}'.format(x_train[0], y_train[0]))

结果是

x_train[0]=
[[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   3  18  18  18 126 136 175  26 166 255 247 127   0   0   0   0]
 [  0   0   0   0   0   0   0   0  30  36  94 154 170 253 253 253 253 253 225 172 253 242 195  64   0   0   0   0]
 [  0   0   0   0   0   0   0  49 238 253 253 253 253 253 253 253 253 251  93  82  82  56  39   0   0   0   0   0]
 [  0   0   0   0   0   0   0  18 219 253 253 253 253 253 198 182 247 241   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0  80 156 107 253 253 205  11   0  43 154   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0  14   1 154 253  90   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0 139 253 190   2   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0  11 190 253  70   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0  35 241 225 160 108   1   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0  81 240 253 253 119  25   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0  45 186 253 253 150  27   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  16  93 252 253 187   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 249 253 249  64   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0  46 130 183 253 253 207   2   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0  39 148 229 253 253 253 250 182   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0  24 114 221 253 253 253 253 201  78   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0  23  66 213 253 253 253 253 198  81   2   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0  18 171 219 253 253 253 253 195  80   9   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0  55 172 226 253 253 253 253 244 133  11   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0 136 253 253 253 212 135 132  16   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]]
y_train[0]=5

额,只看懂了它的标签是’5‘,我们不是cpu,看不懂这一堆数据是什么意思,但这么多数据对应了28*28个像素点的灰度值,我们可以show出来

plt.imshow(x_train[0], cmap='gray')
plt.show()

Tensorflow学习笔记(三):神经网络八股_第1张图片
至此,我们终于知道了,原来是一个手写的数字“5”

(2)搭建神经网络进行手写数字识别

认识MNIST数据集之后,我们就可以搭建一个基本的三层网络对手写数字进行分类识别,设置隐藏层神经元个数为128,使用relu,结合iris代码的复现,我们很容易就用python写出这个神经网络了
为了提升训练效果,我们可以在导入MNIST时对数据进行归一化处理

  • 利用sequential
# import
import tensorflow as tf

# 导入dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# model = models.Sequential
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# model.compile
model.compile(
    optimizer='adam',
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
    metrics=['sparse_categorical_accuracy']
)

# model.fit
model.fit(
    x_train, y_train,
    batch_size=32, epochs=5,
    validation_data=(x_test, y_test),
    validation_freq=1
)

# model.summary
model.summary()

结果

Epoch 1/5
1875/1875 [==============================] - 3s 1ms/step - loss: 0.2566 - sparse_categorical_accuracy: 0.9262 - val_loss: 0.1357 - val_sparse_categorical_accuracy: 0.9588
Epoch 2/5
1875/1875 [==============================] - 2s 1ms/step - loss: 0.1150 - sparse_categorical_accuracy: 0.9658 - val_loss: 0.0966 - val_sparse_categorical_accuracy: 0.9710
Epoch 3/5
1875/1875 [==============================] - 2s 1ms/step - loss: 0.0795 - sparse_categorical_accuracy: 0.9757 - val_loss: 0.0892 - val_sparse_categorical_accuracy: 0.9732
Epoch 4/5
1875/1875 [==============================] - 2s 1ms/step - loss: 0.0600 - sparse_categorical_accuracy: 0.9816 - val_loss: 0.0786 - val_sparse_categorical_accuracy: 0.9753
Epoch 5/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0455 - sparse_categorical_accuracy: 0.9862 - val_loss: 0.0839 - val_sparse_categorical_accuracy: 0.9744
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 flatten (Flatten)           (None, 784)               0         
                                                                 
 dense (Dense)               (None, 128)               100480    
                                                                 
 dense_1 (Dense)             (None, 10)                1290      
                                                                 
=================================================================
Total params: 101,770
Trainable params: 101,770
Non-trainable params: 0
_________________________________________________________________

注:这里每个epoch的1875指的是60000/32

  • 利用class
# import
import tensorflow as tf

# 导入dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# class model
class mnistModel(tf.keras.Model):
# 构建类
    def __init__(self):
        super(mnistModel, self).__init__()
        # 定义网络结构块
        self.inlayer = tf.keras.layers.Flatten()
        self.hiddenlayer = tf.keras.layers.Dense(128, activation='relu')
        self.outlayer = tf.keras.layers.Dense(10, activation='softmax')

    def call(self, x):
        # 调用网络结构块,实现前向传播
        x = self.inlayer(x)
        s1 = self.hiddenlayer(x)
        y = self.outlayer(s1)
        return y

model = mnistModel()  # 实例化对象

# model.compile
model.compile(
    optimizer='adam',
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
    metrics=['sparse_categorical_accuracy']
)

# model.fit
model.fit(
    x_train, y_train,
    batch_size=32, epochs=5,
    validation_data=(x_test, y_test),
    validation_freq=1
)

# model.summary
model.summary()

结果

Epoch 1/5
1875/1875 [==============================] - 3s 1ms/step - loss: 0.2608 - sparse_categorical_accuracy: 0.9261 - val_loss: 0.1376 - val_sparse_categorical_accuracy: 0.9606
Epoch 2/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.1171 - sparse_categorical_accuracy: 0.9656 - val_loss: 0.0935 - val_sparse_categorical_accuracy: 0.9725
Epoch 3/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.0802 - sparse_categorical_accuracy: 0.9758 - val_loss: 0.0857 - val_sparse_categorical_accuracy: 0.9726
Epoch 4/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.0603 - sparse_categorical_accuracy: 0.9820 - val_loss: 0.0809 - val_sparse_categorical_accuracy: 0.9753
Epoch 5/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0451 - sparse_categorical_accuracy: 0.9858 - val_loss: 0.0770 - val_sparse_categorical_accuracy: 0.9769
Model: "mnist_model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 flatten (Flatten)           multiple                  0         
                                                                 
 dense (Dense)               multiple                  100480    
                                                                 
 dense_1 (Dense)             multiple                  1290      
                                                                 
=================================================================
Total params: 101,770
Trainable params: 101,770
Non-trainable params: 0
_________________________________________________________________

3. 练习:Fashion数据集及分类

(1)认识数据集

通过MNIST数据集,我们已经很熟悉认识这个新数据集的流程了

import tensorflow as tf
import matplotlib.pyplot as plt

# 导入dataset
fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion.load_data()

# fashion数据集形状
print('x_train.shape:', x_train.shape)
print('y_train.shape', y_train.shape)
print('x_test.shape', x_test.shape)
print('y_test.shape', y_test.shape)

# 数据集内容
print('x_train[0]=\n{}\ny_train[0]={}'.format(x_train[0], y_train[0]))
plt.imshow(x_train[0], cmap='gray')
plt.show()

我们发现此数据集和MNIST数据集形状是相同的

x_train.shape: (60000, 28, 28)
y_train.shape (60000,)
x_test.shape (10000, 28, 28)
y_test.shape (10000,)

也就是说,Fashion也是由含60000个元素的训练集和含10000个元素的测试集组成的。对于每一个元素而言,对应的数据为一个2828(=784)大小的二维数组,对应的标签为一个11的数值

以训练集的第一个元素为例,我们将它print出来,结果是

x_train[0]=
[[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   1   0   0  13  73   0   0   1   4   0   0   0   0   1   1   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   3   0  36 136 127  62  54   0   0   0   1   3   4   0   0   3]
 [  0   0   0   0   0   0   0   0   0   0   0   0   6   0 102 204 176 134 144 123  23   0   0   0   0  12  10   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0 155 236 207 178 107 156 161 109  64  23  77 130  72  15]
 [  0   0   0   0   0   0   0   0   0   0   0   1   0  69 207 223 218 216 216 163 127 121 122 146 141  88 172  66]
 [  0   0   0   0   0   0   0   0   0   1   1   1   0 200 232 232 233 229 223 223 215 213 164 127 123 196 229   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0 183 225 216 223 228 235 227 224 222 224 221 223 245 173   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0 193 228 218 213 198 180 212 210 211 213 223 220 243 202   0]
 [  0   0   0   0   0   0   0   0   0   1   3   0  12 219 220 212 218 192 169 227 208 218 224 212 226 197 209  52]
 [  0   0   0   0   0   0   0   0   0   0   6   0  99 244 222 220 218 203  198 221 215 213 222 220 245 119 167  56]
 [  0   0   0   0   0   0   0   0   0   4   0   0  55 236 228 230 228 240 232 213 218 223 234 217 217 209  92   0]
 [  0   0   1   4   6   7   2   0   0   0   0   0 237 226 217 223 222 219 222 221 216 223 229 215 218 255  77   0]
 [  0   3   0   0   0   0   0   0   0  62 145 204 228 207 213 221 218 208  211 218 224 223 219 215 224 244 159   0]
 [  0   0   0   0  18  44  82 107 189 228 220 222 217 226 200 205 211 230 224 234 176 188 250 248 233 238 215   0]
 [  0  57 187 208 224 221 224 208 204 214 208 209 200 159 245 193 206 223  255 255 221 234 221 211 220 232 246   0]
 [  3 202 228 224 221 211 211 214 205 205 205 220 240  80 150 255 229 221 188 154 191 210 204 209 222 228 225   0]
 [ 98 233 198 210 222 229 229 234 249 220 194 215 217 241  65  73 106 117  168 219 221 215 217 223 223 224 229  29]
 [ 75 204 212 204 193 205 211 225 216 185 197 206 198 213 240 195 227 245 239 223 218 212 209 222 220 221 230  67]
 [ 48 203 183 194 213 197 185 190 194 192 202 214 219 221 220 236 225 216 199 206 186 181 177 172 181 205 206 115]
 [  0 122 219 193 179 171 183 196 204 210 213 207 211 210 200 196 194 191 195 191 198 192 176 156 167 177 210  92]
 [  0   0  74 189 212 191 175 172 175 181 185 188 189 188 193 198 204 209  210 210 211 188 188 194 192 216 170   0]
 [  2   0   0   0  66 200 222 237 239 242 246 243 244 221 220 193 191 179 182 182 181 176 166 168  99  58   0   0]
 [  0   0   0   0   0   0   0  40  61  44  72  41  35   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]]
y_train[0]=9

Tensorflow学习笔记(三):神经网络八股_第2张图片

鞋子对应的标签为‘9’,通过查阅资料:该数据集用0-9分别表示10种不同的衣物

(2)搭建神经网络训练

# import
import tensorflow as tf

# 导入dataset
fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# model = models.Sequential
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

''''也可以使用如下方法
# class model
class fashionModel(tf.keras.Model):
# 构建类
    def __init__(self):
        super(fashionModel, self).__init__()
        # 定义网络结构块
        self.inlayer = tf.keras.layers.Flatten()
        self.hiddenlayer = tf.keras.layers.Dense(256, activation='relu')
        self.hiddenlayer = tf.keras.layers.Dense(256, activation='relu')
        self.outlayer = tf.keras.layers.Dense(10, activation='softmax')

    def call(self, x):
        # 调用网络结构块,实现前向传播
        x = self.inlayer(x)
        s1 = self.hiddenlayer(x)
        y = self.outlayer(s1)
        return y

model = fashionModel()  # 实例化对象'''

# model.compile
model.compile(
    optimizer='adam',
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
    metrics=['sparse_categorical_accuracy']
)

# model.fit
model.fit(
    x_train, y_train,
    batch_size=32, epochs=5,
    validation_data=(x_test, y_test),
    validation_freq=1
)

# model.summary
model.summary()

结果(我尝试了更改隐藏层的层数和神经元个数,在相同epoch的情况下似乎没有什么显著的改变)

Epoch 1/5
1875/1875 [==============================] - 22s 11ms/step - loss: 0.4655 - sparse_categorical_accuracy: 0.8287 - val_loss: 0.4106 - val_sparse_categorical_accuracy: 0.8519
Epoch 2/5
1875/1875 [==============================] - 22s 12ms/step - loss: 0.3535 - sparse_categorical_accuracy: 0.8697 - val_loss: 0.3885 - val_sparse_categorical_accuracy: 0.8632
Epoch 3/5
1875/1875 [==============================] - 21s 11ms/step - loss: 0.3178 - sparse_categorical_accuracy: 0.8829 - val_loss: 0.3430 - val_sparse_categorical_accuracy: 0.8770
Epoch 4/5
1875/1875 [==============================] - 18s 10ms/step - loss: 0.2954 - sparse_categorical_accuracy: 0.8898 - val_loss: 0.3423 - val_sparse_categorical_accuracy: 0.8769
Epoch 5/5
1875/1875 [==============================] - 16s 9ms/step - loss: 0.2769 - sparse_categorical_accuracy: 0.8951 - val_loss: 0.3506 - val_sparse_categorical_accuracy: 0.8777
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 flatten (Flatten)           (None, 784)               0         
                                                                 
 dense (Dense)               (None, 512)               401920    
                                                                 
 dense_1 (Dense)             (None, 512)               262656    
                                                                 
 dense_2 (Dense)             (None, 10)                5130      
                                                                 
=================================================================
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0
_________________________________________________________________

三、网络八股功能扩展

复盘六步法

(1)总结

  • import
  • train, test
  • model = Sequential / Class
  • model.compile
  • model.fit
  • model.summary

(2)限制

  • 导入数据都是load_data调库,如果是自己专业领域数据怎么办?——自制数据集
  • 数据量少,模型泛化能力弱?——数据增强
  • 每次模型训练从零开始?——断点续训,实时保存最优模型
  • 保存训练好的参数?——参数提取
  • 训练/测试效果?——Acc/Loss可视化
  • 学到的知识如何在实际中应用?——给图识物应用程序(将在第四部分介绍)

基于上述限制,将以MNIST数据集训练网络代码为模板进行修改,并一一给出解决方案

1. 自制数据集

库中的数据集虽然好用,但只能作为一个范例,当我们想要以专业领域的数据集进行训练时,自制数据集是必要的

功能代码实现

从以文件形式存储的数据到能够作为训练依据的数据集,主要过程是读取文件内容、对内容进行规范化处理、写入内存等,为方便起见,我编写了一个类,包含对MNIST数据集和Fashion数据集的生成,可以看出,基本就是对文件的操作以及一些规范化

class SelfMadeDataset():

    def __init__(self):
        pass

    def generateds(self, path, txt_path):
        f = open(txt_path, 'r')
        # 逐行读出,每一行格式为“图片地址 标签”,如“28755_0.jpg 0”
        contents = f.readlines()
        f.close()

        x, y = [], []  # x, y分别存放数据和标签
        for content in contents:
            value = content.split()  # 每一行以空格分开,value = [图片地址, 标签]
            img_path = path + value[0]  # 总路径+该图片路径
            img = Image.open(img_path)
            img = np.array(img.convert('L'))  # 标准化
            img = img / 255.  # 归一化
            x.append(img)
            y.append(value[1])
            print('loading:'+content)  # print出加载进程

        x = np.array(x)
        y = np.array(y)
        y = y.astype(np.int64)
        return x, y

    def load_mnist(self):
        # 一级目录地址
        dic_path = "D:/source/repos/FNN/MNIST_FC/mnist_image_label/"

        # 相关文件夹及txt文件的偏移地址
        train_path = dic_path + 'mnist_train_jpg_60000/'
        train_txt = dic_path + 'mnist_train_jpg_60000.txt'
        x_train_savepath = dic_path + 'mnist_x_train.npy'
        y_train_savepath = dic_path + 'mnist_y_train.npy'

        test_path = dic_path + 'mnist_test_jpg_10000/'
        test_txt = dic_path + 'mnist_test_jpg_10000.txt'
        x_test_savepath = dic_path + 'mnist_x_test.npy'
        y_test_savepath = dic_path + 'mnist_y_test.npy'

        # 如果.npy文件已经创建完成
        if os.path.exists(x_train_savepath) and \
                os.path.exists(y_train_savepath) and \
                os.path.exists(x_test_savepath) and \
                os.path.exists(y_test_savepath):
            # img和label信息通过若干个一维数组存放,需要对img形状进行重塑,并分别存入x/y中
            print('---------- Load Datasets ----------')
            x_train_save = np.load(x_train_savepath)
            x_train = np.reshape(x_train_save, (len(x_train_save), 28, 28))
            y_train = np.load(y_train_savepath)
            x_test_save = np.load(x_test_savepath)
            x_test = np.reshape(x_test_save, (len(x_test_save), 28, 28))
            y_test = np.load(y_test_savepath)

        else:
            # 先直接将数据和标签存入输出
            print('---------- Generate Datasets ----------')
            x_train, y_train = self.generateds(train_path, train_txt)
            x_test, y_test = self.generateds(test_path, test_txt)

            # 再以若干行(一维数组)的形式存入.txt文件中
            print('---------- Save Datasets ----------')
            x_train_save = np.reshape(x_train, (len(x_train), -1))
            x_test_save = np.reshape(x_test, (len(x_test), -1))
            np.save(x_train_savepath, x_train_save)
            np.save(y_train_savepath, y_train)
            np.save(x_test_savepath, x_test_save)
            np.save(y_test_savepath, y_test)

        return (x_train, y_train), (x_test, y_test)

    # 类似可以写出Fashion自制数据集
    def load_fashion(self):
        # 一级目录地址
        dic_path = "D:/source/repos/FNN/FASHION_FC/fashion_image_label/"

        train_path = dic_path + 'fashion_train_jpg_60000/'
        train_txt = dic_path + 'fashion_train_jpg_60000.txt'
        x_train_savepath = dic_path + 'fashion_x_train.npy'
        y_train_savepath = dic_path + 'fashion_y_train.npy'

        test_path = dic_path + 'fashion_test_jpg_10000/'
        test_txt = dic_path + 'fashion_test_jpg_10000.txt'
        x_test_savepath = dic_path + 'fashion_x_test.npy'
        y_test_savepath = dic_path + 'fashion_y_test.npy'

        if os.path.exists(x_train_savepath) and \
                os.path.exists(y_train_savepath) and \
                os.path.exists(x_test_savepath) and \
                os.path.exists(y_test_savepath):
            print('---------- Load Datasets ----------')
            x_train_save = np.load(x_train_savepath)
            x_train = np.reshape(x_train_save, (len(x_train_save), 28, 28))
            y_train = np.load(y_train_savepath)
            x_test_save = np.load(x_test_savepath)
            x_test = np.reshape(x_test_save, (len(x_test_save), 28, 28))
            y_test = np.load(y_test_savepath)

        else:
            print('---------- Generate Datasets ----------')
            x_train, y_train = self.generateds(train_path, train_txt)
            x_test, y_test = self.generateds(test_path, test_txt)

            print('---------- Save Datasets ----------')
            x_train_save = np.reshape(x_train, (len(x_train), -1))
            x_test_save = np.reshape(x_test, (len(x_test), -1))
            np.save(x_train_savepath, x_train_save)
            np.save(y_train_savepath, y_train)
            np.save(x_test_savepath, x_test_save)
            np.save(y_test_savepath, y_test)

        return (x_train, y_train), (x_test, y_test)

八股修改

以MNIST数据集为例,我们仅需要将原来第二部分的

# 导入dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

更改为

# 导入dataset
mnist = expand.SelfMadeDataset()
(x_train, y_train), (x_test, y_test) = mnist.load_fashion()

注:因我们的自制数据集已经将数据规范化,因此不用再进行规范化操作了

2. 数据增强

给定的数据集并不能完全反应真实情况,同时有时数据集元素的数量较少、情况较为单一,因此训练出的模型泛化能力不一定强,因此,利用进行伸缩、旋转、翻转等变换后的图像进行训练是十分必要的,这就是所谓的数据增强

核心函数

首先实例化数据增强类

  • image_gen_train = tf.keras.preprocessing.image.ImageDataGenerator(...)

这个函数有以下几个参数:

  • rescale=所有数据将乘以该数值(可归一化)
  • rotation_range=随机旋转角度数范围
  • width_shift_range=随机宽度偏移量
  • height_shift_range=随机高度偏移量
  • horizontal_flip=是否随机水平翻转
  • zoom_range=随机缩放的范围(1±x)

之后,对类进行操作用以对训练集进行数据增强,并在model.fit训练时匹配,注意这里的x_train要求为四维数组,因此需要进行reshape

  • image_gen_train.fit(x_train)
  • model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), ...)

相关代码

依据上述核心函数,在MNIST原代码上调整,得到(省略号部分和原先保持一致)

# import
...

# 导入dataset
...

# data_gen
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
image_gen_train = tf.keras.preprocessing.image.ImageDataGenerator(
    rescale=1. / 1.,
    rotation_range=45,
    width_shift_range=.15,
    height_shift_range=.15,
    horizontal_flip=False,
    zoom_range=0.5
)
image_gen_train.fit(x_train)

# model = models.Sequential
...

# model.compile
...

# model.fit
model.fit(
    image_gen_train.flow(x_train, y_train, batch_size=32),  # 同步更新
    epochs=5,
    validation_data=(x_test, y_test),
    validation_freq=1
)

# model.summary
...

结果说明

最终测试集准确率大概达到了0.92,和数据增强前(0.97)比较甚至变低了,但这并不能反映数据增强的真实效果,因为我们的测试集是标准的MNIST数据集,而不是实际情况,而在实际的手写数据识别中,数据增强的意义就体现出来了

3. 断点续训

每次训练都从零开始显然是费时费力的,为了解决这个问题,我们是否可以保存训练好的参数呢?这便是所谓的断点续训的方法,每次训练结束后可根据需要将训练好的相关量保存在本地,方便后续调用

代码实现

在训练前,加入断点内容保存和回调函数代码

# checkpoint save & callback
checkpoint_save_path = "./checkpoint/mnist.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('---------- Load the Model ----------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_save_path,
    save_weights_only=True,
    save_best_only=True
)

训练时,加入参数

callbacks=[cp_callback]

使用效果

若从零开始,慢慢向上爬

Epoch 1/5
val_loss: 0.1375 - val_sparse_categorical_accuracy: 0.9585
Epoch 2/5
val_loss: 0.1008 - val_sparse_categorical_accuracy: 0.9680
Epoch 3/5
val_loss: 0.0843 - val_sparse_categorical_accuracy: 0.9728
Epoch 4/5
val_loss: 0.0774 - val_sparse_categorical_accuracy: 0.9766
Epoch 5/5
val_loss: 0.0732 - val_sparse_categorical_accuracy: 0.9763

使用之前的结果,“出生即巅峰”

---------- Load the Model ----------
Epoch 1/5
val_loss: 0.0797 - val_sparse_categorical_accuracy: 0.9752
Epoch 2/5
val_loss: 0.0809 - val_sparse_categorical_accuracy: 0.9776
Epoch 3/5
val_loss: 0.0871 - val_sparse_categorical_accuracy: 0.9750
Epoch 4/5
val_loss: 0.0760 - val_sparse_categorical_accuracy: 0.9786
Epoch 5/5
val_loss: 0.0812 - val_sparse_categorical_accuracy: 0.9772

4. 参数提取

断点续训保留了每次训练后的最优参数,那么如何查看这些参数值呢?这便是参数提取的内容了

直接查看

一个很自然的想法是print出来,一行代码就搞定了

print(model.trainable_variables)

看看结果(这里只复制了第一个参数)

[<tf.Variable 'dense/kernel:0' shape=(784, 128) dtype=float32, numpy=
array([[ 0.00500327,  0.04753769, -0.01752532, ...,  0.03947137,
        -0.01869851, -0.06784071],
       [ 0.03976591, -0.01105286, -0.06868242, ..., -0.02361085,
        -0.01682989, -0.01024982],
       [ 0.06888347, -0.08000371,  0.04266344, ..., -0.01104672,
        -0.05294819, -0.05270603],
       ...,
       [ 0.03220175,  0.05865171, -0.06073547, ...,  0.03521375,
         0.04109269,  0.061808  ],
       [-0.00427113, -0.02391875,  0.0570228 , ...,  0.01772309,
        -0.01797158,  0.03190365],
       [-0.06256977, -0.06899459, -0.02244005, ...,  0.02622585,
         0.05694849,  0.05649317]]

每个结果中间都有省略号,这是因为数据太多了,而想要查看完整的参数,只需在最开始加入一行代码

np.set_printoptions(threshold=np.inf)

threshold这个值表示限制到多少,可以任意更改;这次的结果便是不带省略号的完整版(太多了就不复制了)

保存本地

如果想在本地查看参数值,可以以.txt文件记录到本地

# save to disk
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

5. Acc/Loss可视化

同样,我们想要以更加直观的方式查看训练/测试效果

代码实现

加val的表示validation(验证集/测试集)

# visualize acc & loss
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()

plt.suptitle('Curves of Accuracy and Loss')
# plt.savefig('./results.png')  # save to disk
plt.show()

结果展示

Tensorflow学习笔记(三):神经网络八股_第3张图片

四、从训练到实际

经过了不断的改进和训练,我们得到了越加完美的参数空间,我们可以通过这些参数来进行真正的手写数字识别

训练源码

# import
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import os

np.set_printoptions(threshold=np.inf)

# 导入dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# data_gen
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
image_gen_train = tf.keras.preprocessing.image.ImageDataGenerator(
    rescale=1. / 1.,
    rotation_range=45,
    width_shift_range=.15,
    height_shift_range=.15,
    horizontal_flip=False,
    zoom_range=0.5
)
image_gen_train.fit(x_train)

# model = models.Sequential
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# model.compile
model.compile(
    optimizer='adam',
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
    metrics=['sparse_categorical_accuracy']
)

# checkpoint save & callback
checkpoint_save_path = "./checkpoint/mnist.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
    print('---------- Load the Model ----------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_save_path,
    save_weights_only=True,
    save_best_only=True
)

# model.fit
history = model.fit(
    image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5,
    validation_data=(x_test, y_test),
    validation_freq=1,
    callbacks=[cp_callback]
)

# model.summary
model.summary()

# save to disk
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()


''''# visualize acc & loss
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()

plt.suptitle('Curves of Accuracy and Loss')
# plt.savefig('./results.png')  # save to disk
plt.show()'''


''''# class model
class mnistModel(tf.keras.Model):
# 构建类
    def __init__(self):
        super(mnistModel, self).__init__()
        # 定义网络结构块
        self.inlayer = tf.keras.layers.Flatten()
        self.hiddenlayer = tf.keras.layers.Dense(128, activation='relu')
        self.outlayer = tf.keras.layers.Dense(10, activation='softmax')

    def call(self, x):
        # 调用网络结构块,实现前向传播
        x = self.inlayer(x)
        s1 = self.hiddenlayer(x)
        y = self.outlayer(s1)
        return y

model = mnistModel()  # 实例化对象'''

应用源码

import cv2 as cv
import numpy as np
from PIL import Image
import tensorflow as tf


def recognition():
    model_save_path = "./checkpoint/mnist.ckpt"

    # model = models.Sequential
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])

    model.load_weights(model_save_path)

    image_path = './MNIST_FC/number.png'
    img = Image.open(image_path)
    img = img.resize((28, 28), Image.ANTIALIAS)
    img_arr = np.array(img.convert('L'))

    # 图像预处理,滤去噪声
    for m in range(28):
        for n in range(28):
            if img_arr[m][n] < 200:
                img_arr[m][n] = 255
            else:
                img_arr[m][n] = 0

    img_arr = img_arr / 255.
    x_predict = img_arr[tf.newaxis, ...]
    print('---------- Recognizing ----------')
    result = model.predict(x_predict)

    pred = tf.argmax(result, axis=1)
    result = str(pred[0].numpy())
    print('---------- Success! ----------')
    print('\nthe number is:{}'.format(result))
    return result


# 鼠标的回调函数的参数格式是固定的,不要随意更改。
def mouse_event(event, x, y, flags, param):
    global start, drawing

    # 左键按下:开始画图
    if event == cv.EVENT_LBUTTONDOWN:
        drawing = True
        start = (x, y)
    # 鼠标移动,画图
    elif event == cv.EVENT_MOUSEMOVE:
        if drawing:
            cv.circle(img, (x, y), 8, 0, -1)
    # 左键释放:结束画图
    elif event == cv.EVENT_LBUTTONUP:
        drawing = False
        cv.circle(img, (x, y), 8, 0, -1)


def initialize():
    cv.destroyAllWindows()  # 清空所有窗口
    img = 255 * np.ones((256, 256), np.uint8)  # 创建白幕
    cv.namedWindow('image')
    cv.setMouseCallback('image', mouse_event)
    return img


def show():
    if flag:
        src = cv.imread('./MNIST_FC/number.png')

        # 调用cv.putText()添加文字
        text = recognition()
        AddText = src.copy()
        cv.putText(AddText, text, (0, 50), cv.FONT_HERSHEY_COMPLEX, 1.5, (0, 0, 255), 5)

        # 显示拼接后的图片
        cv.imshow('text', AddText)
        cv.waitKey()

    img = initialize()
    return img


drawing = False  # 是否开始画图
start = (-1, -1)
flag = False

img = initialize()

while True:
    cv.imshow('image', img)
    # 按ESC键退出程序
    if cv.waitKey(1) == 27:
        break
    # 按r重启
    elif cv.waitKey(1) == ord('r'):
        img = initialize()
        continue
    # 按Enter进行识别
    elif cv.waitKey(1) == 13:
        flag = True
        cv.imwrite('./MNIST_FC/number.png', img)
        show()
        continue

opencv与手写板部分,参考了这位大神的文章,cv2库就是opencv,可以直接安装

pip install opencv-python

使用效果

还是蛮好玩的,就是有点出墨不太顺畅and很卡,以及‘4’容易识别成‘9’,正确率在可接受范围内吧,今后还可以继续改进!
Tensorflow学习笔记(三):神经网络八股_第4张图片
Tensorflow学习笔记(三):神经网络八股_第5张图片
Tensorflow学习笔记(三):神经网络八股_第6张图片

Tensorflow学习笔记(三):神经网络八股_第7张图片

Tensorflow学习笔记(三):神经网络八股_第8张图片
Tensorflow学习笔记(三):神经网络八股_第9张图片
Tensorflow学习笔记(三):神经网络八股_第10张图片

Tensorflow学习笔记(三):神经网络八股_第11张图片
Tensorflow学习笔记(三):神经网络八股_第12张图片
Tensorflow学习笔记(三):神经网络八股_第13张图片
这一部分名字是“八股”,内容还是很多的,尤其是我把老师两讲的东西合到了一起,不过给我的感觉就是很大一部分都是在“套模板”,不是很难,没什么可以发挥的地方。不过在此过程中,也了解到了关于文件、cv等“附加内容”,也还是蛮有收获的吧,ok收工啦!

你可能感兴趣的:(Tensorflow学习笔记,神经网络,tensorflow,学习)