future 线程报错后_将两个用同一预训练网络的模型放在不同线程预测报错

infer的源码基本就是改了一下Paddle下image_classification里的infer.py,

from future import absolute_import

from future import division

from future import print_function

import os

import time

import sys

parent_path = os.path.abspath(os.path.join(file, *(['..'] * 2)))

if parent_path not in sys.path:

sys.path.append(parent_path)

import math

import numpy as np

import functools

import re

import logging

import time

import paddle

import paddle.fluid as fluid

import reader

import models

import json

from utils import *

import shutil

from xlrd import open_workbook

import argparse

import re

import json

parser = argparse.ArgumentParser(description=doc)

yapf: disable

add_arg = functools.partial(add_arguments, argparser=parser)

add_arg('data_dir', str, "./data/ILSVRC2012/val/", "The ImageNet data")

add_arg('use_gpu', bool, False, "Whether to use GPU or not.")

add_arg('class_dim', int, 1000, "Class number.")

parser.add_argument("--pretrained_model",

default="/home/ResNet200_vd_pretrained",

required=False, type=str,

help="The path to load pretrained model")

add_arg('model', str, "ResNet200_vd", "Set the network to use.")

add_arg('save_inference', bool, False, "Whether to save inference model or not")

add_arg('resize_short_size', int, 256, "Set resize short size")

add_arg('reader_thread', int, 1, "The number of multi thread reader")

add_arg('reader_buf_size', int, 2048, "The buf size of multi thread reader")

parser.add_argument('--image_mean', nargs='+', type=float, default=[0.485, 0.456, 0.406],

help="The mean of input image data")

parser.add_argument('--image_std', nargs='+', type=float, default=[0.229, 0.224, 0.225],

help="The std of input image data")

parser.add_argument('--image_shape', nargs='+', type=int, default=[3, 224, 224], help="the shape of image")

add_arg('topk', int, 1, "topk")

add_arg('class_map_path', str, "/Net.xls", "readable label filepath")

add_arg('interpolation', int, None, "The interpolation mode")

add_arg('padding_type', str, "SAME", "Padding type of convolution")

add_arg('use_se', bool, True, "Whether to use Squeeze-and-Excitation module for EfficientNet.")

add_arg('image_path', str, None, "single image path")

add_arg('batch_size', int, 1, "batch_size on all the devices")

add_arg('save_json_path', str, "/home/result.json", "save output to a json file")

yapf: enable

logging.basicConfig(level=logging.INFO)

logger = logging.getLogger(name)

infer_gate = True

def set_gate(value):

global infer_gate

infer_gate = value

def get_gate_value():

return infer_gate

def infer(infer_args):

global infer_gate

infer_counter = 0

print(infer_gate)

while infer_gate:

infer_files = os.listdir(r"/home/seed")

infer_args.image_path = r"/home/seed/" + str(infer_files[0])

if infer_counter == 0:

infer_model_list = [m for m in dir(models) if "__" not in m]

assert infer_args.model in infer_model_list, "{} is not in lists: {}".format(infer_args.model,

infer_model_list)

assert os.path.isdir(infer_args.pretrained_model

), "please load right pretrained model path for infer"

assert infer_args.image_shape[

1] <= infer_args.resize_short_size, "Please check the args:image_shape and args:resize_short_size, The croped size(image_shape[1]) must smaller than or equal to the resized length(resize_short_size) "

if infer_args.image_path:

assert os.path.isfile(

infer_args.image_path

), "Please check the args:image_path, it should be a path to single image."

if infer_args.use_gpu:

assert fluid.core.get_cuda_device_count(

) == 1, "please set \"export CUDA_VISIBLE_DEVICES=\" available single card"

else:

assert int(os.environ.get('CPU_NUM',

1)) == 1, "please set CPU_NUM as 1"

infer_image = fluid.data(

name='image', shape=[None] + infer_args.image_shape, dtype='float32')

if infer_counter == 0:

if infer_args.model.startswith('EfficientNet'):

infer_model = models.__dict__[infer_args.model](is_test=True,

padding_type=infer_args.padding_type, use_se=infer_args.use_se)

else:

infer_model = models.__dict__[infer_args.model]()

if infer_args.model == "GoogLeNet":

infer_out, infer__, infer__ = infer_model.net(input=infer_image, class_dim=infer_args.class_dim)

else:

infer_out = infer_model.net(input=infer_image, class_dim=infer_args.class_dim)

infer_out = fluid.layers.softmax(infer_out)

infer_test_program = fluid.default_main_program().clone(for_test=True)

infer_gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))

infer_place = fluid.CUDAPlace(infer_gpu_id) if infer_args.use_gpu else fluid.CPUPlace()

infer_exe = fluid.Executor(infer_place)

infer_exe.run(fluid.default_startup_program())

if infer_args.use_gpu:

infer_places = fluid.framework.cuda_places()

else:

infer_places = fluid.framework.cpu_places()

if infer_args.class_dim == 1000:

[infer_compiled_program, infer_feeder, infer_fetch_list] = \

fluid.io.load_inference_model(r"/home/ResNet200_vd_1000", infer_exe,

model_filename="model", params_filename="params")

if infer_args.class_dim == 6:

[infer_compiled_program, infer_feeder, infer_fetch_list] = \

fluid.io.load_inference_model(r"/home/ResNet200_vd_6", infer_exe,

model_filename="model", params_filename="params")

if infer_args.save_inference:

fluid.io.save_inference_model(

dirname=infer_args.model,

feeded_var_names=['image'],

main_program=infer_test_program,

target_vars=infer_out,

executor=infer_exe,

model_filename='model',

params_filename='params')

logger.info("model: {0} is already saved".format(infer_args.model))

exit(0)

infer_imagenet_reader = reader.ImageNetReader()

infer_test_reader = infer_imagenet_reader.test(settings=infer_args)

infer_feeder = fluid.DataFeeder(place=infer_places, feed_list=[infer_image])

if infer_counter == 0:

TOPK = infer_args.topk

if os.path.exists(infer_args.class_map_path):

logger.info(

"The map of readable label and numerical label has been found!")

infer_workbook = open_workbook(infer_args.class_map_path)

infer_sheet = infer_workbook.sheet_by_index(0)

infer_image_id = infer_sheet.col_values(3)

infer_first_tag = infer_sheet.col_values(4)

infer_second_tag = infer_sheet.col_values(5)

infer_third_tag = infer_sheet.col_values(6)

infer_label_dict = {}

for i in range(1, len(infer_image_id)):

infer_label_dict[infer_image_id[i]] = [infer_first_tag[i], infer_second_tag[i], infer_third_tag[i]]

infer_info = {}

infer_parallel_data = []

infer_parallel_id = []

infer_place_num = paddle.fluid.core.get_cuda_device_count(

) if infer_args.use_gpu else int(os.environ.get('CPU_NUM', 1))

if os.path.exists(infer_args.save_json_path):

logger.warning("path: {} Already exists! will recover it\n".format(

infer_args.save_json_path))

with open(infer_args.save_json_path, "w") as infer_fout:

for batch_id, infer_data in enumerate(infer_test_reader()):

infer_image_data = [[items[0]] for items in infer_data]

infer_image_id = [items[1] for items in infer_data]

infer_parallel_id.append(infer_image_id)

infer_parallel_data.append(infer_image_data)

if infer_place_num == len(infer_parallel_data):

infer_result = infer_exe.run(

infer_compiled_program,

fetch_list=infer_fetch_list,

feed=list(infer_feeder.feed_parallel(infer_parallel_data, infer_place_num)))

for infer_i, infer_res in enumerate(infer_result[0]):

infer_pred_label = np.argsort(infer_res)[::-1][:TOPK]

infer_real_id = str(np.array(infer_parallel_id).flatten()[infer_i])

_, infer_real_id = os.path.split(infer_real_id)

if os.path.exists(infer_args.class_map_path):

infer_readable_pred_label = []

for infer_label in infer_pred_label:

if infer_res[infer_pred_label][0] > 0.9:

if infer_label_dict[infer_label][2]:

infer_readable_pred_label.append(infer_label_dict[infer_label][2])

else:

infer_readable_pred_label.append(infer_label_dict[infer_label][1])

elif infer_res[infer_pred_label][0] > 0.8:

infer_readable_pred_label.append(infer_label_dict[infer_label][1])

elif infer_res[infer_pred_label][0] > 0.2:

if infer_label_dict[infer_label][0]:

infer_readable_pred_label.append(infer_label_dict[infer_label][0])

else:

infer_readable_pred_label.append(infer_label_dict[infer_label][1])

else:

infer_readable_pred_label.append("记录")

infer_info[infer_real_id] = {}

infer_info[infer_real_id]['id'], infer_info[infer_real_id]['score'], infer_info[infer_real_id]['class'], infer_info[

infer_real_id]['class_name'] = str(infer_real_id), str(infer_res[infer_pred_label]), str(

infer_pred_label), infer_readable_pred_label

else:

infer_info[infer_real_id] = {}

infer_info[infer_real_id]['id'], infer_info[infer_real_id]['score'], infer_info[infer_real_id]['class'] = \

str(infer_real_id), str(infer_res[infer_pred_label]), str(infer_pred_label)

logger.info("{}, {}".format(infer_real_id, infer_info[infer_real_id]))

# fout.write(real_id + "\t" + json.dumps(info[real_id]) +

# "\n")

infer_fout.write(json.dumps(infer_info[infer_real_id]) + "\n")

infer_parallel_data = []

infer_parallel_id = []

infer_counter = infer_counter + 1

sys.stdout.flush()

infer_gate = False

def main():

infer_parser = argparse.ArgumentParser(description=__doc__)

# yapf: disable

infer_add_arg = functools.partial(add_arguments, argparser=infer_parser)

infer_add_arg('data_dir', str, "./data/ILSVRC2012/val/", "The ImageNet data")

infer_add_arg('use_gpu', bool, False, "Whether to use GPU or not.")

infer_add_arg('class_dim', int, 1000, "Class number.")

infer_parser.add_argument("--pretrained_model",

default="/home/ResNet200_vd_pretrained",

required=False, type=str,

help="The path to load pretrained model")

infer_add_arg('model', str, "ResNet200_vd", "Set the network to use.")

infer_add_arg('save_inference', bool, False, "Whether to save inference model or not")

infer_add_arg('resize_short_size', int, 256, "Set resize short size")

infer_add_arg('reader_thread', int, 1, "The number of multi thread reader")

infer_add_arg('reader_buf_size', int, 2048, "The buf size of multi thread reader")

infer_parser.add_argument('--image_mean', nargs='+', type=float, default=[0.485, 0.456, 0.406],

help="The mean of input image data")

infer_parser.add_argument('--image_std', nargs='+', type=float, default=[0.229, 0.224, 0.225],

help="The std of input image data")

infer_parser.add_argument('--image_shape', nargs='+', type=int, default=[3, 224, 224], help="the shape of image")

infer_add_arg('topk', int, 1, "topk")

infer_add_arg('class_map_path', str, "/home/Net.xls",

"readable label filepath")

infer_add_arg('interpolation', int, None, "The interpolation mode")

infer_add_arg('padding_type', str, "SAME", "Padding type of convolution")

infer_add_arg('use_se', bool, True, "Whether to use Squeeze-and-Excitation module for EfficientNet.")

infer_add_arg('image_path', str, None, "single image path")

infer_add_arg('batch_size', int, 1, "batch_size on all the devices")

infer_add_arg('save_json_path', str, "/home/result.json", "save output to a json file")

logging.basicConfig(level=logging.INFO)

infer_args = infer_parser.parse_args()

check_gpu()

check_version()

infer(infer_args)

if name == 'main':

a = time.time()

main()

b = time.time()

print(str(b - a))

你可能感兴趣的:(future,线程报错后)