无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Code程序员,所以我写的代码也不会很差)。
文章列表
往期回顾
在上一篇文章中,我们介绍了循环神经网络以及它的训练算法。我们也介绍了循环神经网络很难训练的原因,这导致了它在实际应用中,很难处理长距离的依赖。在本文中,我们将介绍一种改进之后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM),它成功的解决了原始循环神经网络的缺陷,成为当前最流行的RNN,在语音识别、图片描述、自然语言处理等许多领域中成功应用。但不幸的一面是,LSTM的结构很复杂,因此,我们需要花上一些力气,才能把LSTM以及它的训练算法弄明白。在搞清楚LSTM之后,我们再介绍一种LSTM的变体:GRU (Gated Recurrent Unit)。 它的结构比LSTM简单,而效果却和LSTM一样好,因此,它正在逐渐流行起来。最后,我们仍然会动手实现一个LSTM。
长短时记忆网络是啥
我们首先了解一下长短时记忆网络产生的背景。回顾一下零基础入门深度学习(5) - 循环神经网络中推导的,误差项沿时间反向传播的公式:
我们可以根据下面的不等式,来获取的模的上界(模可以看做对中每一项值的大小的度量):
我们可以看到,误差项从t时刻传递到k时刻,其值的上界是的指数函数。分别是对角矩阵和矩阵W模的上界。显然,除非乘积的值位于1附近,否则,当t-k很大时(也就是误差传递很多个时刻时),整个式子的值就会变得极小(当乘积小于1)或者极大(当乘积大于1),前者就是梯度消失,后者就是梯度爆炸。虽然科学家们搞出了很多技巧(比如怎样初始化权重),让的值尽可能贴近于1,终究还是难以抵挡指数函数的威力。
梯度消失到底意味着什么?在零基础入门深度学习(5) - 循环神经网络中我们已证明,权重数组W最终的梯度是各个时刻的梯度之和,即:
假设某轮训练中,各时刻的梯度以及最终的梯度之和如下图:
我们就可以看到,从上图的t-3时刻开始,梯度已经几乎减少到0了。那么,从这个时刻开始再往之前走,得到的梯度(几乎为零)就不会对最终的梯度值有任何贡献,这就相当于无论t-3时刻之前的网络状态h是什么,在训练中都不会对权重数组W的更新产生影响,也就是网络事实上已经忽略了t-3时刻之前的状态。这就是原始RNN无法处理长距离依赖的原因。
既然找到了问题的原因,那么我们就能解决它。从问题的定位到解决,科学家们大概花了7、8年时间。终于有一天,Hochreiter和Schmidhuber两位科学家发明出长短时记忆网络,一举解决这个问题。
其实,长短时记忆网络的思路比较简单。原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。那么,假如我们再增加一个状态,即c,让它来保存长期的状态,那么问题不就解决了么?如下图所示:
新增加的状态c,称为单元状态(cell state)。我们把上图按照时间维度展开:
上图仅仅是一个示意图,我们可以看出,在t时刻,LSTM的输入有三个:当前时刻网络的输入值、上一时刻LSTM的输出值、以及上一时刻的单元状态;LSTM的输出有两个:当前时刻LSTM输出值、和当前时刻的单元状态。注意、、都是向量。
LSTM的关键,就是怎样控制长期状态c。在这里,LSTM的思路是使用三个控制开关。第一个开关,负责控制继续保存长期状态c;第二个开关,负责控制把即时状态输入到长期状态c;第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。三个开关的作用如下图所示:
接下来,我们要描述一下,输出h和单元状态c的具体计算方法。
长短时记忆网络的前向计算
前面描述的开关是怎样在算法中实现的呢?这就用到了门(gate)的概念。门实际上就是一层全连接层,它的输入是一个向量,输出是一个0到1之间的实数向量。假设W是门的权重向量,是偏置项,那么门可以表示为:
门的使用,就是用门的输出向量按元素乘以我们需要控制的那个向量。因为门的输出是0到1之间的实数向量,那么,当门输出为0时,任何向量与之相乘都会得到0向量,这就相当于啥都不能通过;输出为1时,任何向量与之相乘都不会有任何改变,这就相当于啥都可以通过。因为(也就是sigmoid函数)的值域是(0,1),所以门的状态都是半开半闭的。
LSTM用两个门来控制单元状态c的内容,一个是遗忘门(forget gate),它决定了上一时刻的单元状态有多少保留到当前时刻;另一个是输入门(input gate),它决定了当前时刻网络的输入有多少保存到单元状态。LSTM用输出门(output gate)来控制单元状态有多少输出到LSTM的当前输出值。
我们先来看一下遗忘门:
式
上式中,是遗忘门的权重矩阵,表示把两个向量连接成一个更长的向量,是遗忘门的偏置项,是sigmoid函数。如果输入的维度是,隐藏层的维度是,单元状态的维度是(通常),则遗忘门的权重矩阵维度是。事实上,权重矩阵都是两个矩阵拼接而成的:一个是,它对应着输入项,其维度为;一个是,它对应着输入项,其维度为。可以写为:
下图显示了遗忘门的计算:
接下来看看输入门:
式
上式中,是输入门的权重矩阵,是输入门的偏置项。下图表示了输入门的计算:
接下来,我们计算用于描述当前输入的单元状态,它是根据上一次的输出和本次输入来计算的:
式
下图是的计算:
现在,我们计算当前时刻的单元状态。它是由上一次的单元状态按元素乘以遗忘门,再用当前输入的单元状态按元素乘以输入门,再将两个积加和产生的:
式
符号表示按元素乘。下图是的计算:
这样,我们就把LSTM关于当前的记忆和长期的记忆组合在一起,形成了新的单元状态。由于遗忘门的控制,它可以保存很久很久之前的信息,由于输入门的控制,它又可以避免当前无关紧要的内容进入记忆。下面,我们要看看输出门,它控制了长期记忆对当前输出的影响:
式
下图表示输出门的计算:
LSTM最终的输出,是由输出门和单元状态共同确定的:
式
下图表示LSTM最终输出的计算:
式1到式6就是LSTM前向计算的全部公式。至此,我们就把LSTM前向计算讲完了。
长短时记忆网络的训练
熟悉我们这个系列文章的同学都清楚,训练部分往往比前向计算部分复杂多了。LSTM的前向计算都这么复杂,那么,可想而知,它的训练算法一定是非常非常复杂的。现在只有做几次深呼吸,再一头扎进公式海洋吧。
LSTM训练算法框架
LSTM的训练算法仍然是反向传播算法,对于这个算法,我们已经非常熟悉了。主要有下面三个步骤:
前向计算每个神经元的输出值,对于LSTM来说,即、、、、五个向量的值。计算方法已经在上一节中描述过了。
反向计算每个神经元的误差项值。与循环神经网络一样,LSTM误差项的反向传播也是包括两个方向:一个是沿时间的反向传播,即从当前t时刻开始,计算每个时刻的误差项;一个是将误差项向上一层传播。
根据相应的误差项,计算每个权重的梯度。
关于公式和符号的说明
首先,我们对推导中用到的一些公式、符号做一下必要的说明。
接下来的推导中,我们设定gate的激活函数为sigmoid函数,输出的激活函数为tanh函数。他们的导数分别为:
从上面可以看出,sigmoid和tanh函数的导数都是原函数的函数。这样,我们一旦计算原函数的值,就可以用它来计算出导数的值。
LSTM需要学习的参数共有8组,分别是:遗忘门的权重矩阵和偏置项、输入门的权重矩阵和偏置项、输出门的权重矩阵和偏置项,以及计算单元状态的权重矩阵和偏置项。因为权重矩阵的两部分在反向传播中使用不同的公式,因此在后续的推导中,权重矩阵、、、都将被写为分开的两个矩阵:、、、、、、、。
我们解释一下按元素乘符号。当作用于两个向量时,运算如下:
当作用于一个向量和一个矩阵时,运算如下:
当作用于两个矩阵时,两个矩阵对应位置的元素相乘。按元素乘可以在某些情况下简化矩阵和向量运算。例如,当一个对角矩阵右乘一个矩阵时,相当于用对角矩阵的对角线组成的向量按元素乘那个矩阵:
当一个行向量右乘一个对角矩阵时,相当于这个行向量按元素乘那个矩阵对角线组成的向量:
上面这两点,在我们后续推导中会多次用到。
在t时刻,LSTM的输出值为。我们定义t时刻的误差项为:
注意,和前面几篇文章不同,我们这里假设误差项是损失函数对输出值的导数,而不是对加权输入的导数。因为LSTM有四个加权输入,分别对应、、、,我们希望往上一层传递一个误差项而不是四个。但我们仍然需要定义出这四个加权输入,以及他们对应的误差项。
误差项沿时间的反向传递
沿时间反向传递误差项,就是要计算出t-1时刻的误差项。
我们知道,
是一个Jacobian矩阵。如果隐藏层h的维度是N的话,那么它就是一个矩阵。为了求出它,我们列出的计算公式,即前面的式6和式4:
显然,、、、都是的函数,那么,利用全导数公式可得:
式
下面,我们要把式7中的每个偏导数都求出来。根据式6,我们可以求出:
根据式4,我们可以求出:
因为:
我们很容易得出:
将上述偏导数带入到式7,我们得到:
式
根据、、、的定义,可知:
式式式式
式8到式12就是将误差沿时间反向传播一个时刻的公式。有了它,我们可以写出将误差项向前传递到任意k时刻的公式:
式
将误差项传递到上一层
我们假设当前为第l层,定义l-1层的误差项是误差函数对l-1层加权输入的导数,即:
本次LSTM的输入由下面的公式计算:
上式中,表示第l-1层的激活函数。
因为、、、都是的函数,又是的函数,因此,要求出E对的导数,就需要使用全导数公式:
式
式14就是将误差传递到上一层的公式。
权重梯度的计算
对于、、、的权重梯度,我们知道它的梯度是各个时刻梯度之和(证明过程请参考文章零基础入门深度学习(5) - 循环神经网络),我们首先求出它们在t时刻的梯度,然后再求出他们最终的梯度。
我们已经求得了误差项、、、,很容易求出t时刻的、的、的、的:
将各个时刻的梯度加在一起,就能得到最终的梯度:
对于偏置项、、、的梯度,也是将各个时刻的梯度加在一起。下面是各个时刻的偏置项梯度:
下面是最终的偏置项梯度,即将各个时刻的偏置项梯度加在一起:
对于、、、的权重梯度,只需要根据相应的误差项直接计算即可:
以上就是LSTM的训练算法的全部公式。因为这里面存在很多重复的模式,仔细看看,会发觉并不是太复杂。
当然,LSTM存在着相当多的变体,读者可以在互联网上找到很多资料。因为大家已经熟悉了基本LSTM的算法,因此理解这些变体比较容易,因此本文就不再赘述了。
长短时记忆网络的实现
在下面的实现中,LSTMLayer的参数包括输入维度、输出维度、隐藏层维度,单元状态维度等于隐藏层维度。gate的激活函数为sigmoid函数,输出的激活函数为tanh。
激活函数的实现
我们先实现两个激活函数:sigmoid和tanh。
classSigmoidActivator(object):
defforward(self,weighted_input):
return1.0/(1.0+np.exp(-weighted_input))
defbackward(self,output):
returnoutput *(1-output)
classTanhActivator(object):
defforward(self,weighted_input):
return2.0/(1.0+np.exp(-2*weighted_input))-1.0
defbackward(self,output):
return1-output *output
LSTM初始化
和前两篇文章代码架构一样,我们把LSTM的实现放在LstmLayer类中。
根据LSTM前向计算和方向传播算法,我们需要初始化一系列矩阵和向量。这些矩阵和向量有两类用途,一类是用于保存模型参数,例如、、、、、、、;另一类是保存各种中间计算结果,以便于反向传播算法使用,它们包括、、、、、、、、、、,以及各个权重对应的梯度。
在构造函数的初始化中,只初始化了与forward计算相关的变量,与backward相关的变量没有初始化。这是因为构造LSTM对象的时候,我们还不知道它未来是用于训练(既有forward又有backward)还是推理(只有forward)。
classLstmLayer(object):
def__init__(self,input_width,state_width,
learning_rate):
self.input_width =input_width
self.state_width =state_width
self.learning_rate =learning_rate
# 门的激活函数
self.gate_activator =SigmoidActivator()
# 输出的激活函数
self.output_activator =TanhActivator()
# 当前时刻初始化为t0
self.times =0
# 各个时刻的单元状态向量c
self.c_list =self.init_state_vec()
# 各个时刻的输出向量h
self.h_list =self.init_state_vec()
# 各个时刻的遗忘门f
self.f_list =self.init_state_vec()
# 各个时刻的输入门i
self.i_list =self.init_state_vec()
# 各个时刻的输出门o
self.o_list =self.init_state_vec()
# 各个时刻的即时状态c~
self.ct_list =self.init_state_vec()
# 遗忘门权重矩阵Wfh, Wfx, 偏置项bf
self.Wfh,self.Wfx,self.bf =(
self.init_weight_mat())
# 输入门权重矩阵Wfh, Wfx, 偏置项bf
self.Wih,self.Wix,self.bi =(
self.init_weight_mat())
# 输出门权重矩阵Wfh, Wfx, 偏置项bf
self.Woh,self.Wox,self.bo =(
self.init_weight_mat())
# 单元状态权重矩阵Wfh, Wfx, 偏置项bf
self.Wch,self.Wcx,self.bc =(
self.init_weight_mat())
definit_state_vec(self):
'''
初始化保存状态的向量
'''
state_vec_list =[]
state_vec_list.append(np.zeros(
(self.state_width,1)))
returnstate_vec_list
definit_weight_mat(self):
'''
初始化权重矩阵
'''
Wh=np.random.uniform(-1e-4,1e-4,
(self.state_width,self.state_width))
Wx=np.random.uniform(-1e-4,1e-4,
(self.state_width,self.input_width))
b =np.zeros((self.state_width,1))
returnWh,Wx,b
前向计算的实现
forward方法实现了LSTM的前向计算:
defforward(self,x):
'''
根据式1-式6进行前向计算
'''
self.times +=1
# 遗忘门
fg =self.calc_gate(x,self.Wfx,self.Wfh,
self.bf,self.gate_activator)
self.f_list.append(fg)
# 输入门
ig =self.calc_gate(x,self.Wix,self.Wih,
self.bi,self.gate_activator)
self.i_list.append(ig)
# 输出门
og =self.calc_gate(x,self.Wox,self.Woh,
self.bo,self.gate_activator)
self.o_list.append(og)
# 即时状态
ct =self.calc_gate(x,self.Wcx,self.Wch,
self.bc,self.output_activator)
self.ct_list.append(ct)
# 单元状态
c =fg *self.c_list[self.times -1]+ig *ct
self.c_list.append(c)
# 输出
h =og *self.output_activator.forward(c)
self.h_list.append(h)
defcalc_gate(self,x,Wx,Wh,b,activator):
'''
计算门
'''
h =self.h_list[self.times -1]# 上次的LSTM输出
net =np.dot(Wh,h)+np.dot(Wx,x)+b
gate =activator.forward(net)
returngate
从上面的代码我们可以看到,门的计算都是相同的算法,而门和的计算仅仅是激活函数不同。因此我们提出了calc_gate方法,这样减少了很多重复代码。
反向传播算法的实现
backward方法实现了LSTM的反向传播算法。需要注意的是,与backword相关的内部状态变量是在调用backward方法之后才初始化的。这种延迟初始化的一个好处是,如果LSTM只是用来推理,那么就不需要初始化这些变量,节省了很多内存。
defbackward(self,x,delta_h,activator):
'''
实现LSTM训练算法
'''
self.calc_delta(delta_h,activator)
self.calc_gradient(x)
算法主要分成两个部分,一部分使计算误差项:
defcalc_delta(self,delta_h,activator):
# 初始化各个时刻的误差项
self.delta_h_list =self.init_delta()# 输出误差项
self.delta_o_list =self.init_delta()# 输出门误差项
self.delta_i_list =self.init_delta()# 输入门误差项
self.delta_f_list =self.init_delta()# 遗忘门误差项
self.delta_ct_list =self.init_delta()# 即时输出误差项
# 保存从上一层传递下来的当前时刻的误差项
self.delta_h_list[-1]=delta_h
# 迭代计算每个时刻的误差项
fork inrange(self.times,0,-1):
self.calc_delta_k(k)
definit_delta(self):
'''
初始化误差项
'''
delta_list =[]
fori inrange(self.times +1):
delta_list.append(np.zeros(
(self.state_width,1)))
returndelta_list
defcalc_delta_k(self,k):
'''
根据k时刻的delta_h,计算k时刻的delta_f、
delta_i、delta_o、delta_ct,以及k-1时刻的delta_h
'''
# 获得k时刻前向计算的值
ig =self.i_list[k]
og =self.o_list[k]
fg =self.f_list[k]
ct =self.ct_list[k]
c =self.c_list[k]
c_prev =self.c_list[k-1]
tanh_c =self.output_activator.forward(c)
delta_k =self.delta_h_list[k]
# 根据式9计算delta_o
delta_o =(delta_k *tanh_c *
self.gate_activator.backward(og))
delta_f =(delta_k *og *
(1-tanh_c *tanh_c)*c_prev *
self.gate_activator.backward(fg))
delta_i =(delta_k *og *
(1-tanh_c *tanh_c)*ct *
self.gate_activator.backward(ig))
delta_ct =(delta_k *og *
(1-tanh_c *tanh_c)*ig *
self.output_activator.backward(ct))
delta_h_prev =(
np.dot(delta_o.transpose(),self.Woh)+
np.dot(delta_i.transpose(),self.Wih)+
np.dot(delta_f.transpose(),self.Wfh)+
np.dot(delta_ct.transpose(),self.Wch)
).transpose()
# 保存全部delta值
self.delta_h_list[k-1]=delta_h_prev
self.delta_f_list[k]=delta_f
self.delta_i_list[k]=delta_i
self.delta_o_list[k]=delta_o
self.delta_ct_list[k]=delta_ct
另一部分是计算梯度:
defcalc_gradient(self,x):
# 初始化遗忘门权重梯度矩阵和偏置项
self.Wfh_grad,self.Wfx_grad,self.bf_grad =(
self.init_weight_gradient_mat())
# 初始化输入门权重梯度矩阵和偏置项
self.Wih_grad,self.Wix_grad,self.bi_grad =(
self.init_weight_gradient_mat())
# 初始化输出门权重梯度矩阵和偏置项
self.Woh_grad,self.Wox_grad,self.bo_grad =(
self.init_weight_gradient_mat())
# 初始化单元状态权重梯度矩阵和偏置项
self.Wch_grad,self.Wcx_grad,self.bc_grad =(
self.init_weight_gradient_mat())
# 计算对上一次输出h的权重梯度
fort inrange(self.times,0,-1):
# 计算各个时刻的梯度
(Wfh_grad,bf_grad,
Wih_grad,bi_grad,
Woh_grad,bo_grad,
Wch_grad,bc_grad)=(
self.calc_gradient_t(t))
# 实际梯度是各时刻梯度之和
self.Wfh_grad+=Wfh_grad
self.bf_grad +=bf_grad
self.Wih_grad+=Wih_grad
self.bi_grad +=bi_grad
self.Woh_grad+=Woh_grad
self.bo_grad +=bo_grad
self.Wch_grad+=Wch_grad
self.bc_grad +=bc_grad
print'-----%d-----'%t
printWfh_grad
printself.Wfh_grad
# 计算对本次输入x的权重梯度
xt =x.transpose()
self.Wfx_grad=np.dot(self.delta_f_list[-1],xt)
self.Wix_grad=np.dot(self.delta_i_list[-1],xt)
self.Wox_grad=np.dot(self.delta_o_list[-1],xt)
self.Wcx_grad=np.dot(self.delta_ct_list[-1],xt)
definit_weight_gradient_mat(self):
'''
初始化权重矩阵
'''
Wh_grad=np.zeros((self.state_width,
self.state_width))
Wx_grad=np.zeros((self.state_width,
self.input_width))
b_grad =np.zeros((self.state_width,1))
returnWh_grad,Wx_grad,b_grad
defcalc_gradient_t(self,t):
'''
计算每个时刻t权重的梯度
'''
h_prev =self.h_list[t-1].transpose()
Wfh_grad=np.dot(self.delta_f_list[t],h_prev)
bf_grad =self.delta_f_list[t]
Wih_grad=np.dot(self.delta_i_list[t],h_prev)
bi_grad =self.delta_f_list[t]
Woh_grad=np.dot(self.delta_o_list[t],h_prev)
bo_grad =self.delta_f_list[t]
Wch_grad=np.dot(self.delta_ct_list[t],h_prev)
bc_grad =self.delta_ct_list[t]
returnWfh_grad,bf_grad,Wih_grad,bi_grad,\
Woh_grad,bo_grad,Wch_grad,bc_grad
梯度下降算法的实现
下面是用梯度下降算法来更新权重:
defupdate(self):
'''
按照梯度下降,更新权重
'''
self.Wfh-=self.learning_rate *self.Whf_grad
self.Wfx-=self.learning_rate *self.Whx_grad
self.bf -=self.learning_rate *self.bf_grad
self.Wih-=self.learning_rate *self.Whi_grad
self.Wix-=self.learning_rate *self.Whi_grad
self.bi -=self.learning_rate *self.bi_grad
self.Woh-=self.learning_rate *self.Wof_grad
self.Wox-=self.learning_rate *self.Wox_grad
self.bo -=self.learning_rate *self.bo_grad
self.Wch-=self.learning_rate *self.Wcf_grad
self.Wcx-=self.learning_rate *self.Wcx_grad
self.bc -=self.learning_rate *self.bc_grad
梯度检查的实现
和RecurrentLayer一样,为了支持梯度检查,我们需要支持重置内部状态:
defreset_state(self):
# 当前时刻初始化为t0
self.times =0
# 各个时刻的单元状态向量c
self.c_list =self.init_state_vec()
# 各个时刻的输出向量h
self.h_list =self.init_state_vec()
# 各个时刻的遗忘门f
self.f_list =self.init_state_vec()
# 各个时刻的输入门i
self.i_list =self.init_state_vec()
# 各个时刻的输出门o
self.o_list =self.init_state_vec()
# 各个时刻的即时状态c~
self.ct_list =self.init_state_vec()
最后,是梯度检查的代码:
defdata_set():
x =[np.array([[1],[2],[3]]),
np.array([[2],[3],[4]])]
d =np.array([[1],[2]])
returnx,d
defgradient_check():
'''
梯度检查
'''
# 设计一个误差函数,取所有节点输出项之和
error_function =lambdao:o.sum()
lstm =LstmLayer(3,2,1e-3)
# 计算forward值
x,d =data_set()
lstm.forward(x[0])
lstm.forward(x[1])
# 求取sensitivity map
sensitivity_array =np.ones(lstm.h_list[-1].shape,
dtype=np.float64)
# 计算梯度
lstm.backward(x[1],sensitivity_array,IdentityActivator())
# 检查梯度
epsilon =10e-4
fori inrange(lstm.Wfh.shape[0]):
forj inrange(lstm.Wfh.shape[1]):
lstm.Wfh[i,j]+=epsilon
lstm.reset_state()
lstm.forward(x[0])
lstm.forward(x[1])
err1 =error_function(lstm.h_list[-1])
lstm.Wfh[i,j]-=2*epsilon
lstm.reset_state()
lstm.forward(x[0])
lstm.forward(x[1])
err2 =error_function(lstm.h_list[-1])
expect_grad =(err1 -err2)/(2*epsilon)
lstm.Wfh[i,j]+=epsilon
print'weights(%d,%d): expected - actural %.4e - %.4e'%(
i,j,expect_grad,lstm.Wfh_grad[i,j])
returnlstm
我们只对做了检查,读者可以自行增加对其他梯度的检查。下面是某次梯度检查的结果:
GRU
前面我们讲了一种普通的LSTM,事实上LSTM存在很多变体,许多论文中的LSTM都或多或少的不太一样。在众多的LSTM变体中,GRU (Gated Recurrent Unit)也许是最成功的一种。它对LSTM做了很多简化,同时却保持着和LSTM相同的效果。因此,GRU最近变得越来越流行。
GRU对LSTM做了两个大改动:
将输入门、遗忘门、输出门变为两个门:更新门(Update Gate)和重置门(Reset Gate)。
将单元状态与输出合并为一个状态:。
GRU的前向计算公式为:
下图是GRU的示意图:
GRU的训练算法比LSTM简单一些,留给读者自行推导,本文就不再赘述了。
小结
至此,LSTM——也许是结构最复杂的一类神经网络——就讲完了,相信拿下前几篇文章的读者们搞定这篇文章也不在话下吧!现在我们已经了解循环神经网络和它最流行的变体——LSTM,它们都可以用来处理序列。但是,有时候仅仅拥有处理序列的能力还不够,还需要处理比序列更为复杂的结构(比如树结构),这时候就需要用到另外一类网络:递归神经网络(Recursive Neural Network),巧合的是,它的缩写也是RNN。在下一篇文章中,我们将介绍递归神经网络和它的训练算法。现在,漫长的烧脑暂告一段落,休息一下吧:)
参考资料