通常绘制的图颜色只按一个方向渐变,如PCA降维后一个例子
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.decomposition import PCA
import numpy as np
def show_pca_2d():
X = np.loadtxt("exp4/normal.txt",delimiter=",",dtype=np.float32)
pca = PCA(n_components=2)
newX = pca.fit_transform(X)
print(pca.explained_variance_ratio_)
xs = newX[:,0]
ys = newX[:,1]
plt.xlabel('component_x')
plt.ylabel('component_y')
# 沿x轴方向渐变颜色
plt.scatter(xs,ys,c=xs)
plt.show()
如何同时沿x,y轴方向渐变?后面不知是灵感来了还是怎么着,好玩改了下,结果真成了:
将代码倒数第二行:
plt.scatter(xs,ys,c=xs)
改成
plt.scatter(xs,ys,c=(xs+ys)/2)
即可
同样,三维绘图沿x,y,z轴方向同时渐变色也是依葫芦画瓢,将
scatter(xs, ys, zs, c=xs)
改成
scatter(xs, ys, zs, c=(xs+ys+zs)/3)
即可
图A 沿x轴方向渐变色 图B 沿x、y、z轴同时渐变色
完整代码:
def show_pca_3d():
X = np.loadtxt("exp4/normal.txt",delimiter=",",dtype=np.float32)
pca = PCA(n_components=3)
newX = pca.fit_transform(X)
print(pca.explained_variance_ratio_)
fig = plt.figure()
ax = fig.gca(projection='3d')
xs = newX[:,0]
ys = newX[:,1]
zs = newX[:,2]
# 沿x轴渐变色
# ax.scatter(xs, ys, zs, c=xs)
# 沿x,y轴渐变色
# ax.scatter(xs, ys, zs, c=(xs+ys)/2)
# 沿x,y,z轴渐变色
ax.scatter(xs, ys, zs, c=(xs+ys+zs)/3)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()