- legged gym(包含isaac gym)丝滑安装教程
littlewells
机器学习深度学习ubuntupython
LeggedGym(包含IsaacGym)安装教程——Ubuntu22.04安装IsaacGym安装leggedgym2.1.安装pytorch和cuda:2.2.安装rsl_r2.3.安装legged_gym参考了官方包括网上一堆教程,结合自己遇到的坑,整理了一个比较顺畅的流程,基础环境(例如miniconda或者CUDA)配好的情况下按照本教程安装异常顺畅。有任何问题欢迎反馈。(本教程基于Ub
- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
科研_G.E.M.
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- pytorch实现循环神经网络
纠结哥_Shrek
pytorchrnn深度学习
人工智能例子汇总:AI常见的算法和例子-CSDN博客PyTorch提供三种主要的RNN变体:nn.RNN:最基本的循环神经网络,适用于短时依赖任务。nn.LSTM:长短时记忆网络,适用于长序列数据,能有效解决梯度消失问题。nn.GRU:门控循环单元,比LSTM计算更高效,适用于大部分任务。网络类型优势适用场景RNN计算简单,适用于短时序列语音、文本处理(短序列)LSTM适用于长序列,能记忆长期信息
- PyTorch 官方文档 中文版本
圣心
pytorch机器学习
文档来源https://pytorch.cadn.net.cn大多数机器学习工作流都涉及处理数据、创建模型、优化模型参数,并保存经过训练的模型。本教程向您介绍完整的ML工作流在PyTorch中实现,并提供了用于了解有关每个概念的更多信息的链接。我们将使用FashionMNIST数据集来训练一个神经网络,该神经网络预测输入图像是否属于到以下类别之一:T恤/上衣、裤子、套头衫、连衣裙、外套、凉鞋、衬衫
- 使用Transformer模型实现股票走势预测:深入解析和实操案例(基于Python和PyTorch)
AI_DL_CODE
pythontransformerpytorch股票预测
摘要:本文讨论了Transformer模型在股票市场预测中的应用,突出其自注意力机制在捕捉长期趋势和周期性变化方面的优势。文章详细介绍了模型理论、架构,并分析了其在股价预测中的优势和挑战。通过实操案例,展示了如何使用Python和PyTorch进行模型构建、训练和评估,包括数据预处理和性能评价。结果证实Transformer模型能有效预测股价,但需注意过拟合和数据量问题。未来研究将着眼于模型优化和
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
qwe352633
python
importtorchimportnumpyasnpimporttorch.nnasnnfromsklearn.metricsimportaccuracy_score,precision_score,recall_score,f1_scoredata=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
〖是♂我〗
python
代码:importtorchimportnumpyasnpimporttorch.nnasnnfromsklearn.metricsimportaccuracy_score,precision_score,recall_score,f1_score#定义数据:x_data是特征,y_data是标签(目标值)data=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39
- pytorch实现简单的情感分析算法
纠结哥_Shrek
pytorch人工智能python
在PyTorch中实现中文情感分析算法通常涉及以下几个步骤:数据预处理、模型定义、训练和评估。下面是一个简单的实现示例,使用LSTM模型进行中文情感分析。1.数据预处理首先,我们需要对中文文本进行分词,并将文本转换为数值形式(如词向量)。可以使用jieba进行分词,并使用torchtext或自定义的词汇表将词语转换为索引。importtorchimporttorch.nnasnnimporttor
- pytorch基于 Transformer 预训练模型的方法实现词嵌入(tiansz/bert-base-chinese)
纠结哥_Shrek
pytorchtransformerbert
以下是一个完整的词嵌入(WordEmbedding)示例代码,使用modelscope下载tiansz/bert-base-chinese模型,并通过transformers加载模型,获取中文句子的词嵌入。frommodelscope.hub.snapshot_downloadimportsnapshot_downloadfromtransformersimportBertTokenizer,Be
- pytorch基于GloVe实现的词嵌入
纠结哥_Shrek
pytorch人工智能python
PyTorch实现GloVe(GlobalVectorsforWordRepresentation)的完整代码,使用中文语料进行训练,包括共现矩阵构建、模型定义、训练和测试。1.GloVe介绍基于词的共现信息(不像Word2Vec使用滑动窗口预测)适合较大规模的数据(比Word2Vec更稳定)学习出的词向量能捕捉语义信息(如类比关系)importtorchimporttorch.nnasnnimp
- PyTorch中的unsqueeze函数(自用)
黯岚岚岚岚岚
pytorchpytorchpython经验分享
前言最近在学习swin_transformer的模型搭建,其中用到了广播机制,在理解广播机制的过程中发现自己对torch.unsqueeze()函数比较困惑,所以做了个小实验帮助自己理解。问题阐述我们都知道,torch.unsqueeze()函数的作用是拓展张量维度,那么在不同位置拓展之后,原数据是怎样排列的呢?下面进入实验部分。实验>>>importtorch>>>>>>a=torch.Tens
- Faceboxes pytorch代码解读(一) box_utils.py(上篇)
Faded浩
pytorch深度学习神经网络python算法
Faceboxespytorch代码解读(一)box_utils.py(上篇)有幸读到ShifengZhang老师团队的人脸检测论文,感觉对自己的人脸学习论文十分有帮助。通过看别人的paper,学习别人的代码,能够使得我们对人脸检测算法的学习有更近一步的理解。但是在学习的时候发现,自己看别人的代码是一个耗时而又头疼的事情。毕竟每个人的思路都不一样,跟着别人的思路走确实不容易。所以希望能够分享一下自
- 【python】【PyTorch】详细中文解释unsqueeze,代码和代码解读
资源存储库
笔记算法python开发语言
目录【python】【PyTorch】详细中文解释unsqueeze,代码和代码解读unsqueeze()函数的作用:语法:unsqueeze()操作示例:示例1:将一个一维张量转换为二维张量示例2:在最后一维插入一个新维度示例3:负索引插入维度示例4:将二维张量转为三维张量总结:【python】【PyTorch】详细中文解释unsqueeze,代码和代码解读在PyTorch中,unsqueeze
- CondaValueError: Malformed version string ‘~‘: invalid character(s).
椰椰荔枝糖
pythonconda
这个错误通常表示conda命令中使用了无效的版本字符串,其中包含了不允许的字符。在这种情况下,提到了波浪号~,它可能被解释为无效字符。尝试使用一个有效的版本号来安装PyTorchLightning,例如:condainstallpytorch-lightning这会安装最新版本的PyTorchLightning。如果需要特定版本的PyTorchLightning,可以指定版本号:condainst
- Mac系统安装 deepxde +VS code + pytorch
积分酱
pytorchpython人工智能机器学习
deepxde在Mac系统安装和学习笔记系列因为换了苹果电脑MacBookPro,所以软件都需要重新安装,记录一下安装过程。我的配置是python+VSCode。打开终端,直接按住command+空格键,输入终端就可以打开了。1.deepxde安装首先输入python3--version查看python版本,我的是Python3.9.13然后输入python3-mpip-V查看自己的pip版本,我
- 深度学习篇---深度学习框架
Ronin-Lotus
深度学习篇深度学习人工智能pythonPytorchTensorFlowpaddlepaddle
文章目录前言第一部分:框架简介1.PyTorch简介特点动态计算图易于上手强大的社区支持与Python的集成度高核心组件2.TensorFlow简介特点静态计算图跨平台强大的生态系统Keras集成核心组件3.PaddlePaddle简介特点易于使用高性能工业级应用丰富的预训练模型核心组件第二部分:基本操作PyTorch基本操作TensorFlow基本操作PaddlePaddle基本操作总结前言以上
- Paddle和pytorch不可以同时引用
饮马长城窟
paddlepytorch人工智能
importpaddleprint(paddle.utils.run_check())importtorchprint(torch.version.cuda)print(torch.backends.cudnn.version())报错:OSError:[WinError127]找不到指定的程序。Errorloading"C:\ProgramFiles\Python311\Lib\site-pac
- YOLO系列之训练环境(GPU)搭建篇
w94ghz
YOLO改进系列YOLOv8改进系列YOLO深度学习人工智能python目标检测
YOLOv8专栏导航:点击此处跳转Pytorch环境配置(Windows)Anaconda安装此处下载安装即可⭐温馨提示:安装路径
- 简述Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch 等模型
科学的发展-只不过是读大自然写的代码
断纱检测caffetensorflowpytorch
以下是对Caffe、TensorFlow、TensorFlowLite、ONNX、DarkNet和PyTorch等模型的简述:Caffe:Caffe(ConvolutionArchitectureForFeatureExtraction)是一个用于特征抽取的卷积框架,它是一个清晰、可读性高且快速的深度学习框架。Caffe由加州伯克利大学的贾扬清开发,起初是一个用于深度卷积网络的Python框架(无
- 目标检测入门教程:使用Python实现目标检测算法
晨曦之光,优美芝麻
目标检测python算法机器学习-深度学习
目标检测是计算机视觉领域中的重要任务,它旨在识别和定位图像或视频中的特定对象。本教程将介绍如何使用Python编程语言实现目标检测算法。我们将使用一种广泛应用的目标检测算法——基于深度学习的单阶段检测器YOLO(YouOnlyLookOnce)的最新版本YOLOv4作为示例。在开始之前,请确保您已经安装了Python和以下必要的库:NumPy、OpenCV和PyTorch。您可以使用pip命令来安
- 基于Transformer的多通道肌电信号序列分类
咖啡百怪
transformer深度学习人工智能
表面肌电信号(sEMG)为十分重要的人体感官信号,不同的动作和状态对应不同的肌电信号,利用肌电信号的表征能力,我们可以实现对NAO机器人的控制。本项目基于Transformer实现对表面肌电信号的分类,数据使用excel进行保存,使用Pytorch架构建立模型并训练,利用基于Paramiko库的SSH连接来实现对NAO机器人的远程控制。在这里贴上该项目的github仓库连接,大家用得到的可以点个星
- PyTorch 快速入门
無量空所
深度学习机器学习pytorch开源
我们将通过一个简单的示例,快速了解如何使用PyTorch进行机器学习任务。PyTorch是一个开源的机器学习库,它提供了丰富的工具和库,帮助我们轻松地构建、训练和测试神经网络模型。以下是本教程的主要内容:一、数据处理PyTorch提供了两个基本的数据处理工具:torch.utils.data.DataLoader和torch.utils.data.Dataset。Dataset用于存储样本及其对应
- GGUF 大模型文件格式
香菜烤面包
AI系统与算法部署语言模型
1.基础原理GGUF简介当前的大模型的参数规模较大,数以千亿的参数导致了它们的预训练结果文件都在几十GB甚至是几百GB,这不仅导致其使用成本很高,在不同平台进行交换也非常困难。因此,大模型预训练结果文件的保存格式对于模型的使用和生态的发展来说极其重要。大语言模型的开发通常使用PyTorch等框架,其预训练结果通常也会保存为相应的二进制格式,如pt后缀的文件通常就是PyTorch框架保存的二进制预训
- ollama把huggingface下载下来的模型转换为gguf
abments
人工智能语言模型
说明ollama导入从huggingface下载下来的模型在ollama的说明文档中有详细的介绍,大家可以按照文档说明进行操作。importing-pytorch–safetensors。既然官方已经给出了明确的操作步骤,那么我写这篇博客的意义又是什么呢?主要有两个目的:1.我的操作可能更适合中国宝宝体质2.方便后期自己查看要求建议使用conda管理python环境建议使用linux或mac环境,
- pytorch小记(七):pytorch中的保存/加载模型操作
墨绿色的摆渡人
pythonpytorch小记pytorch人工智能python
pytorch小记(七):pytorch中的保存/加载模型操作1.加载模型参数(`state_dict`)1.1保存模型参数1.2加载模型参数1.3常见变种1.3.1指定加载设备1.3.2非严格加载(跳过部分层)1.3.3打印加载的参数2.加载整个模型2.1保存整个模型2.2加载整个模型2.3注意事项3.总结4.加载模型的完整代码示例4.1保存和加载参数4.2保存和加载整个模型4.3加载到不同设备
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
知识鱼丸
machinelearning逻辑回归算法机器学习
1.数据准备首先,我们需要一些示例数据。在这个例子中,我们将生成一些简单的二维数据点,并为其分配标签。2.定义逻辑回归模型接下来,我们定义一个简单的逻辑回归模型。3.训练模型定义损失函数和优化器,然后进行模型训练。4.保存模型训练完成后,我们可以保存模型的状态字典。5.加载模型并进行预测加载保存的模型,并进行预测。importtorchimporttorch.nnasnnimporttorch.o
- 梯度提升用于高效的分类与回归
纠结哥_Shrek
分类回归数据挖掘
使用决策树(DecisionTree)实现梯度提升(GradientBoosting)主要是模拟GBDT(GradientBoostingDecisionTrees)的原理,即:第一棵树拟合原始数据计算残差(负梯度方向)用新的树去拟合残差累加所有树的预测值重复步骤2-4,直至达到指定轮数下面是一个纯Python+PyTorch实现GBDT(梯度提升决策树)的代码示例。1.纯Python实现梯度提升
- pytorch深度Q网络
纠结哥_Shrek
pytorch人工智能python
DQN引入了深度神经网络来近似Q函数,解决了传统Q-learning在处理高维状态空间时的瓶颈,尤其是在像Atari游戏这样的复杂环境中。DQN的核心思想是使用神经网络Q(s,a;θ)Q(s,a;\theta)Q(s,a;θ)来近似Q值函数,其中θ\thetaθ是神经网络的参数。DQN的关键创新包括:经验回放(ExperienceReplay):在强化学习中,当前的学习可能会依赖于最近的经验,容易
- 如何使用深度学习中的 Transformer 算法进行视频目标检测
go5463158465
python算法深度学习python开发语言
以下将介绍如何使用深度学习中的Transformer算法进行视频目标检测,并给出一个复现相关论文思路及示例代码。这里以DETR(End-to-EndObjectDetectionwithTransformers)为基础进行说明,它是将Transformer引入目标检测领域的经典论文。步骤概述环境准备:安装必要的库,如PyTorch、torchvision等。数据准备:使用公开的视频目标检测数据集,
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后