def __init__(self, voc_root, transforms, train_set=True):-》voc_root训练集所在根目录,transforms预处理方法,train_set boolean变量
self.root = os.path.join(voc_root, "VOCdevkit", "VOC2012")
self.img_root = os.path.join(self.root, "JPEGImages")-》图像根目录
self.annotations_root = os.path.join(self.root, "Annotations")-》标注信息根目录
if train_set:
txt_list = os.path.join(self.root, "ImageSets", "Main", "train.txt")-》阅读train.txt文件
else:
txt_list = os.path.join(self.root, "ImageSets", "Main", "val.txt")-》阅读var .txt文件
with open(txt_list) as read:
self.xml_list = [os.path.join(self.annotations_root, line.strip() + ".xml")-》打开txt文件读取它每一行保存为xml文件
for line in read.readlines()]
# read class_indict
try:
json_file = open('./pascal_voc_classes.json', 'r')-》载入写有分类名称和索引的jason文件
self.class_dict = json.load(json_file)-》加入到class_dict 这个变量当中
except Exception as e:
print(e)
exit(-1)
self.transforms = transforms
def __len__(self):
return len(self.xml_list)-》返回数据集文件的个数
def __getitem__(self, idx):-》idx为索引值
# read xml
xml_path = self.xml_list[idx]-》获取xml文件的路径
with open(xml_path) as fid:-》打开xml文件
xml_str = fid.read()
xml = etree.fromstring(xml_str)-》读取xml文件
data = self.parse_xml_to_dict(xml)["annotation"]-》再将xml文件信息传入到parse_xml_to_dict(xml文件信息转化为字典)方法中
img_path = os.path.join(self.img_root, data["filename"])-》拼接成图像路径
image = Image.open(img_path)-》打开图片路径
if image.format != "JPEG":
raise ValueError("Image format not JPEG")-》如果不是jepg格式报错
boxes = []
labels = []
iscrowd = []
for obj in data["object"]:-》遍历字典中的对象信息
xmin = float(obj["bndbox"]["xmin"])-》获取xmin 的值,xmin:x坐标最小值
xmax = float(obj["bndbox"]["xmax"])-》获取xmax的值,xmax:x坐标最大值
ymin = float(obj["bndbox"]["ymin"])-》获取ymin的值,ymin:y坐标最小值
ymax = float(obj["bndbox"]["ymax"])-》获取ymax的值,ymax:y坐标最小值
boxes.append([xmin, ymin, xmax, ymax])-》添加到boxs的变量中
labels.append(self.class_dict[obj["name"]])-》添加到labels的变量中
iscrowd.append(int(obj["difficult"]))-》添加到iscrowd的变量中
boxes = torch.as_tensor(boxes, dtype=torch.float32)
labels = torch.as_tensor(labels, dtype=torch.int64)
iscrowd = torch.as_tensor(iscrowd, dtype=torch.int64)
image_id = torch.tensor([idx])-》把所有东西都转化成tensor,张量
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])-》画出目标区域
target = {}-》创建当前检测的目标数组
target["boxes"] = boxes-》添加boxes(框)
target["labels"] = labels-》添加labels(标签)
target["image_id"] = image_id-》添加image_id(图像id)
target["area"] = area-》添加area(范围)
target["iscrowd"] = iscrowd-》添加iscrowd(未知)
if self.transforms is not None:-》是否进行数据处理
image, target = self.transforms(image, target)
return image, target
def get_height_and_width(self, idx):-》得到数据的行和列
xml_path = self.xml_list[idx]-》读取xml路径
with open(xml_path) as fid:-》打开xml
xml_str = fid.read()-》读取xml
xml = etree.fromstring(xml_str)-》转化为字符串
data = self.parse_xml_to_dict(xml)["annotation"]-》获取xml中annotation这一节点值
data_height = int(data["size"]["height"])-》获取xml中height这一节点值
data_width = int(data["size"]["width"])-》获取xml中width这一节点值
return data_height, data_width
def parse_xml_to_dict(self, xml):-》xml转化为字典实现方法,将xml文件解析成字典形式,
if len(xml) == 0: # 遍历到底层,直接返回tag对应的信息
return {xml.tag: xml.text}
result = {}
for child in xml:
child_result = self.parse_xml_to_dict(child) # 递归遍历标签信息
if child.tag != 'object':
result[child.tag] = child_result[child.tag]
else:
if child.tag not in result: # 因为object可能有多个,所以需要放入列表里
result[child.tag] = []
result[child.tag].append(child_result[child.tag])
return {xml.tag: result}
from torch.utils.data import Dataset
import os
import torch
import json
from PIL import Image
from lxml import etree
class VOC2012DataSet(Dataset):
"""读取解析PASCAL VOC2012数据集"""
def __init__(self, voc_root, transforms, train_set=True):
self.root = os.path.join(voc_root, "VOCdevkit", "VOC2012")
self.img_root = os.path.join(self.root, "JPEGImages")
self.annotations_root = os.path.join(self.root, "Annotations")
# read train.txt or val.txt file
if train_set:
txt_list = os.path.join(self.root, "ImageSets", "Main", "train.txt")
else:
txt_list = os.path.join(self.root, "ImageSets", "Main", "val.txt")
with open(txt_list) as read:
self.xml_list = [os.path.join(self.annotations_root, line.strip() + ".xml")
for line in read.readlines()]
# read class_indict
try:
json_file = open('./pascal_voc_classes.json', 'r')
self.class_dict = json.load(json_file)
except Exception as e:
print(e)
exit(-1)
self.transforms = transforms
def __len__(self):
return len(self.xml_list)
def __getitem__(self, idx):
# read xml
xml_path = self.xml_list[idx]
with open(xml_path) as fid:
xml_str = fid.read()
xml = etree.fromstring(xml_str)
data = self.parse_xml_to_dict(xml)["annotation"]
img_path = os.path.join(self.img_root, data["filename"])
image = Image.open(img_path)
if image.format != "JPEG":
raise ValueError("Image format not JPEG")
boxes = []
labels = []
iscrowd = []
for obj in data["object"]:
xmin = float(obj["bndbox"]["xmin"])
xmax = float(obj["bndbox"]["xmax"])
ymin = float(obj["bndbox"]["ymin"])
ymax = float(obj["bndbox"]["ymax"])
boxes.append([xmin, ymin, xmax, ymax])
labels.append(self.class_dict[obj["name"]])
iscrowd.append(int(obj["difficult"]))
# convert everything into a torch.Tensor
boxes = torch.as_tensor(boxes, dtype=torch.float32)
labels = torch.as_tensor(labels, dtype=torch.int64)
iscrowd = torch.as_tensor(iscrowd, dtype=torch.int64)
image_id = torch.tensor([idx])
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
target = {}
target["boxes"] = boxes
target["labels"] = labels
target["image_id"] = image_id
target["area"] = area
target["iscrowd"] = iscrowd
if self.transforms is not None:
image, target = self.transforms(image, target)
return image, target
def get_height_and_width(self, idx):
# read xml
xml_path = self.xml_list[idx]
with open(xml_path) as fid:
xml_str = fid.read()
xml = etree.fromstring(xml_str)
data = self.parse_xml_to_dict(xml)["annotation"]
data_height = int(data["size"]["height"])
data_width = int(data["size"]["width"])
return data_height, data_width
def parse_xml_to_dict(self, xml):
"""
将xml文件解析成字典形式,参考tensorflow的recursive_parse_xml_to_dict
Args:
xml: xml tree obtained by parsing XML file contents using lxml.etree
Returns:
Python dictionary holding XML contents.
"""
if len(xml) == 0: # 遍历到底层,直接返回tag对应的信息
return {xml.tag: xml.text}
result = {}
for child in xml:
child_result = self.parse_xml_to_dict(child) # 递归遍历标签信息
if child.tag != 'object':
result[child.tag] = child_result[child.tag]
else:
if child.tag not in result: # 因为object可能有多个,所以需要放入列表里
result[child.tag] = []
result[child.tag].append(child_result[child.tag])
return {xml.tag: result}
# import transforms
# from draw_box_utils import draw_box
# from PIL import Image
# import json
# import matplotlib.pyplot as plt
# import torchvision.transforms as ts
# import random
#
# # read class_indict
# category_index = {}
# try:
# json_file = open('./pascal_voc_classes.json', 'r')
# class_dict = json.load(json_file)
# category_index = {v: k for k, v in class_dict.items()}
# except Exception as e:
# print(e)
# exit(-1)
#
# data_transform = {
# "train": transforms.Compose([transforms.ToTensor(),
# transforms.RandomHorizontalFlip(0.5)]),
# "val": transforms.Compose([transforms.ToTensor()])
# }
#
# # load train data set
# train_data_set = VOC2012DataSet(os.getcwd(), data_transform["train"], True)
# print(len(train_data_set))
# for index in random.sample(range(0, len(train_data_set)), k=5):
# img, target = train_data_set[index]
# img = ts.ToPILImage()(img)
# draw_box(img,
# target["boxes"].numpy(),
# target["labels"].numpy(),
# [1 for i in range(len(target["labels"].numpy()))],
# category_index,
# thresh=0.5,
# line_thickness=5)
# plt.imshow(img)
# plt.show()
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing