【智能优化算法】成功历史智能优化器(SHIO)附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

个人主页:Matlab科研工作室

个人信条:格物致知。

⛄ 内容介绍

该论文提出了一种称为成功历史智能优化器 (SHIO) 的新型随机群智能算法。它通过基于搜索空间中找到的三个最佳解决方案提出新的探索和开发运动策略来创建新的运动向量,从而为单目标优化问题提供解决方案,其中每个最佳解决方案都存储在内存中并从到目前为止在优化过程中找到的三个最佳解决方案的平均值。拟议的 SHIO 确保了搜索空间探索和使用的效率。为了确认 SHIO 性能,测试了几种性能测量(搜索历史、轨迹和收敛曲线),并使用 SHIO 来解决 (23) 单目标优化基准函数。这些功能已被分类为单峰,多式联运和固定式多式联运。使用了平均值、标准差、最小值和最大值等各种指标,并记录了定量结果。此外,定性结果的轨迹和搜索历史可视化。测试函数和性能指标的结果表明,所提出的算法可以探索各种搜索区域位置,在优化的同时利用潜在的搜索空间位置,避免局部乐观并有效地收敛到全局最优。与比较算法相比,SHIO 在评估的单峰和多峰基准测试中提供了极具竞争力和卓越的结果。请注意,SHIO 算法源代码可在 并记录了定量结果。此外,定性结果的轨迹和搜索历史可视化。测试函数和性能指标的结果表明,所提出的算法可以探索各种搜索区域位置,在优化的同时利用潜在的搜索空间位置,避免局部乐观并有效地收敛到全局最优。与比较算法相比,SHIO 在评估的单峰和多峰基准测试中提供了极具竞争力和卓越的结果。请注意,SHIO 算法源代码可在 并记录了定量结果。此外,定性结果的轨迹和搜索历史可视化。测试函数和性能指标的结果表明,所提出的算法可以探索各种搜索区域位置,在优化的同时利用潜在的搜索空间位置,避免局部乐观并有效地收敛到全局最优。与比较算法相比,SHIO 在评估的单峰和多峰基准测试中提供了极具竞争力和卓越的结果。请注意,SHIO 算法源代码可在 在优化的同时利用潜在的搜索空间位置,避免局部乐观,高效收敛到全局最优。与比较算法相比,SHIO 在评估的单峰和多峰基准测试中提供了极具竞争力和卓越的结果。请注意,SHIO 算法源代码可在 在优化的同时利用潜在的搜索空间位置,避免局部乐观,高效收敛到全局最优。与比较算法相比,SHIO 在评估的单峰和多峰基准测试中提供了极具竞争力和卓越的结果。

⛄ 部分代码

% Success history intelligent optimizer (SHIO) optmization Code 

% code for paper: Fakhouri, H. N., Hamad, F., & Alawamrah, A. (2022). Success history intelligent optimizer. The Journal of Supercomputing, 78(5), 6461-6502.

%please give citation of the above paper

% benchmarkfunction = @YourCostFunction

% dimensionension = number of your variables

% part of this code is referenced to : https://www.mathworks.com/matlabcentral/fileexchange/44974-grey-wolf-optimizer-gwo

% we have modified the open source code of GWO equations and code to make SHIO code 

%                                                                   %

%   reference of code and credit to : S. Mirjalili, S. M. Mirjalili, A. Lewis             %

%               Grey Wolf Optimizer, Advances in Engineering        %

%               Software , in press,                                %

clear all 

clc

visFlag = 0;

SHIO_Particles_number=50; % Number of search agents

Maximum_numbef_of_iterations=100; 

% Load details of the selected benchmark function

number_of_runs=3;

for i= [ 1 :1 : 5] 

%  for 23 function  use i= [ 1 :1 : 23] 

 if i== 1

        Function_name = 'F1';  

        display('The best optimal value of the objective funciton found F1 : ');

    end  

    

     if i== 2

        Function_name = 'F2'; 

         display('The best optimal value of the objective funciton found F2 : ');

     end 

    if i== 3

        Function_name = 'F3';  

        display('The best optimal value of the objective funciton found F3 : ');

    end  

    

     if i== 4

        Function_name = 'F4'; 

         display('The best optimal value of the objective funciton found F4 : ');

    end 

    if i== 5

        Function_name = 'F5';  

        display('The best optimal value of the objective funciton found F5 : ');

    end  

     if i== 6

        Function_name = 'F6'; 

         display('The best optimal value of the objective funciton found F6 : ');

    end  

    if i== 7

        Function_name = 'F7';  

        display('The best optimal value of the objective funciton found F7 : ');

    end  

     if i== 8

        Function_name = 'F8'; 

         display('The best optimal value of the objective funciton found F8 : ');

    end 

    if i== 9

        Function_name = 'F9';  

        display('The best optimal value of the objective funciton found F9 : ');

    end  

     if i== 10

        Function_name = 'F10'; 

         display('The best optimal value of the objective funciton found F10 : ');

     end  

    if i== 11

        Function_name = 'F11';  

        display('The best optimal value of the objective funciton found F11 : ');

    end  

     if i== 12

        Function_name = 'F12'; 

         display('The best optimal value of the objective funciton found F12 : ');

    end 

    if i== 13

        Function_name = 'F13';  

        display('The best optimal value of the objective funciton found F13 : ');

    end  

     if i== 14

        Function_name = 'F14'; 

         display('The best optimal value of the objective funciton found F14 : ');

     end 

      if i== 15

        Function_name = 'F15';  

        display('The best optimal value of the objective funciton found F15 : ');

    end  

     if i== 16

        Function_name = 'F16'; 

         display('The best optimal value of the objective funciton found F16 : ');

    end  

    if i== 17

        Function_name = 'F17';  

        display('The best optimal value of the objective funciton found F17 : ');

    end  

     if i== 18

        Function_name = 'F18'; 

         display('The best optimal value of the objective funciton found F18 : ');

     end 

     if i== 19

        Function_name = 'F19'; 

         display('The best optimal value of the objective funciton found F19 : ');

     end 

     if i== 20

        Function_name = 'F20'; 

         display('The best optimal value of the objective funciton found F20 : ');

     end 

     if i== 21

        Function_name = 'F21'; 

         display('The best optimal value of the objective funciton found F21 : ');

     end 

     if i== 22

        Function_name = 'F22'; 

         display('The best optimal value of the objective funciton found F22 : ');

     end 

     if i== 23

        Function_name = 'F23'; 

         display('The best optimal value of the objective funciton found F23 : ');

     end 

     

bestsolutionsofSHIO=zeros(1,number_of_runs);

%bestsolutionsofPSO=zeros(1,number_of_runs);

[lowerbound,upperbound,dimension,benchmarkfunction]=Get_Functions_details(Function_name);

for k= [ 1 :1 : number_of_runs]

[SHIO_best_solution_value,SHIO_best_particle_position,SHIO_convergence_curve, Trajectories,fitness_history, position_history]=SHIOoptmizer(SHIO_Particles_number,Maximum_numbef_of_iterations,lowerbound,upperbound,dimension,benchmarkfunction);

bestsolutionsofSHIO(k)=SHIO_best_solution_value;

disp(['run number', num2str(k)]);

disp(['is', num2str(SHIO_best_solution_value)]);

%[gBestScore, PSO_cg_curve]=PSO(SHIO_Particles_number,Maximum_numbef_of_iterations,lowerbound,upperbound,dimension,benchmarkfunction); % run PSO to compare to results

end 

disp(['the avarage for SHIO', num2str(k)]);

mm=mean(bestsolutionsofSHIO);

disp(['the mean OF SHIO is ',num2str(mm)]);

%mm2=mean(bestsolutionsofPSO);

%disp(['the mean OF PSO is ',num2str(mm2)]);

MINSSHIO=min(bestsolutionsofSHIO);

disp(['the min OF SHIO is ',num2str(MINSSHIO)]);

MAXSSHIO=max(bestsolutionsofSHIO);

disp(['the max OF SHIO is ',num2str(MAXSSHIO)]);

disp(['the std for ', num2str(k)]);

stdSHIO=std(bestsolutionsofSHIO);

disp(['the std OF SHIO is ',num2str(stdSHIO)]);

     end 

% %***********************************************************

%draw last function values

% %***********************************************************

%draw curve compare with Pso

figure('Position',[500 500 660 290])

%Draw search space

subplot(1,2,1);

func_plot(Function_name);

title('Parameter space')

xlabel('x_1');

ylabel('x_2');

zlabel([Function_name,'( x_1 , x_2 )'])

%Draw objective space

subplot(1,2,2);

semilogy(SHIO_convergence_curve,'Color','r')

hold on

%semilogy(PSO_cg_curve,'Color','b')

%title('Objective space')

xlabel('Iteration');

ylabel('Best score obtained so far');

axis tight

box on

%******************************************************** draw all shapes togather 

%please wait it take time

figure('Position',[454   445   894   297])

%Draw search space

subplot(1,5,1);

func_plot(Function_name);

title('Parameter space')

xlabel('x_1');

ylabel('x_2');

zlabel([Function_name,'( x_1 , x_2 )'])

box on

axis tight

subplot(1,5,2);

hold on

for k1 = 1: size(position_history,1)

    for k2 = 1: size(position_history,2)

        plot(position_history(k1,k2,1),position_history(k1,k2,2),'.','markersize',1,'MarkerEdgeColor','k','markerfacecolor','k');

    end

end

plot(SHIO_best_particle_position(1),SHIO_best_particle_position(2),'.','markersize',10,'MarkerEdgeColor','r','markerfacecolor','r');

title('Search history (x1 and x2 only)')

xlabel('x1')

ylabel('x2')

box on

axis tight

subplot(1,5,3);

hold on

plot(Trajectories(1,:));

title('Trajectory of 1st Particle')

xlabel('Iteration#')

box on

axis tight

subplot(1,5,4);

hold on

semilogy(mean(fitness_history),'Color','g', 'LineWidth',2);

title('Average fitness of all Particles')

xlabel('Iteration#')

box on

axis tight

%Draw objective space

subplot(1,5,5);

semilogy(SHIO_convergence_curve,'Color','r')

title('Convergence curve')

xlabel('Iteration#');

ylabel('Best score obtained so far');

box on

axis tight

set(gcf, 'position' , [39         479        1727         267]);

%******************************************************** draw all shapes togather 

⛄ 运行结果

【智能优化算法】成功历史智能优化器(SHIO)附matlab代码_第1张图片

【智能优化算法】成功历史智能优化器(SHIO)附matlab代码_第2张图片

【智能优化算法】成功历史智能优化器(SHIO)附matlab代码_第3张图片

⛄ 参考文献

Fakhouri, H. N., Hamad, F., & Alawamrah, A. (2022). Success history intelligent optimizer. The Journal of Supercomputing, 78(5), 6461-6502.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

你可能感兴趣的:(优化求解,matlab,算法,开发语言)