- 比亚迪进军具身智能:未来实验室的战略布局与挑战
前端
比亚迪,这家以新能源汽车闻名全球的企业,正在悄然布局一个全新的领域——具身智能及机器人技术。近日,比亚迪成立未来实验室的消息引发广泛关注,其战略意义和未来发展前景值得我们深入探讨。在人工智能技术飞速发展的今天,选择合适的AI写代码工具对于项目的成功至关重要。比亚迪未来实验室的战略意义:汽车基因与智能融合比亚迪进军机器人领域并非偶然之举。其深厚的汽车制造经验和规模化生产能力,为其在机器人研发方面奠定
- 苹果携手腾讯字节跳动:AI代码生成器赋能iPhone,开启移动智能新时代?
前端
近年来,人工智能技术飞速发展,其在移动设备上的应用也日益普及。近日,路透社爆料称苹果公司正在与腾讯和字节跳动商谈,计划将它们的AI模型整合到在中国销售的iPhone中,这一消息迅速引发了业界广泛关注。这不仅预示着苹果在AI领域的战略布局进一步深化,也标志着AI技术在移动设备应用领域迈入了一个新的里程碑。这篇文章将深入探讨苹果此举的意义、挑战以及对整个AI产业的影响。整合AI模型:机遇与挑战并存苹果
- 关于2025年人工智能agent的5个预测
大模型微调实战
人工智能语言模型机器学习自然语言处理
2024年是人工智能agent走向主流的一年。从年初黑客们那些笨拙、昂贵且充满激情的项目开始,agent现在已经得到了科技巨头、SaaS公司、学术研究人员等更多人的接纳。与此同时,他们的形式也在不断增多,从文本扩展到多种模式,并在现实世界中执行行动的能力也变得更强大。在这里,我预测2025年agent领域的轨迹,因为它开始在人工智能社区之外产生影响力。1.对agent的兴趣持续激增今年,对人工智能
- 《AGI:开启智能新纪元的钥匙》
空云风语
人工智能深度学习神经网络agi人工智能深度学习AIGC
一、AGI:人工智能的进阶之路在科技飞速发展的当下,人工智能(AI)已逐渐渗透到我们生活的各个角落,从智能手机中的语音助手,到自动驾驶汽车,再到医疗领域的疾病诊断辅助,AI的身影无处不在。然而,在AI的宏大版图中,当前被广泛应用的大多属于狭义人工智能(NarrowAI),它专注于特定领域的任务执行,而通用人工智能(ArtificialGeneralIntelligence,简称AGI)则代表着人工
- 零售业的AI赋能与前端开发效率革命:ScriptEcho 的助力
前端
零售业正经历着前所未有的数字化转型,但同时也面临着巨大的挑战。库存管理混乱、个性化客户体验不足等问题,严重制约着零售企业的盈利能力。而人工智能(AI)的兴起,为解决这些问题提供了新的思路。通过AI驱动的实时库存管理和客户行为分析,零售企业可以显著提升运营效率和客户满意度。然而,构建这些AI赋能的零售应用,需要强大的前端开发能力,这正是AI代码生成器ScriptEcho能够发挥关键作用的地方。AI赋
- 人工智能时代,企业如何搭建自己的AI知识库
知识库知识库管理知识库软件
随着人工智能技术的迅猛发展,企业越来越意识到构建AI知识库的重要性。AI知识库不仅能够高效管理企业的海量知识资源,还能通过智能检索和推荐,提升员工的工作效率,促进企业的创新与发展。本文将详细探讨企业如何搭建自己的AI知识库,包括前期准备、技术选型、构建过程及后续维护等方面。一、前期准备在构建AI知识库之前,企业需要进行充分的前期准备,明确需求和目标。确定需求和目标企业首先需要明确知识库的服务对象、
- 科技早报|OpenAI的人工智能模型销售收入超过微软类似业务;荣耀中国区CMO辟谣将采用麒麟芯片 | 最新快讯
最新科技快讯
科技人工智能microsoft
科大讯飞新模型在测试集结果中超越GPT-4Turbo6月27日,科大讯飞发布讯飞星火大模型V4.0。与此前的版本相比,新模型在文本生成、语言理解、知识问答、逻辑推理、数学能力、代码能力、多模态能力等七大能力上都有提升。例如,讯飞星火可以根据用户的语言描述,结合空间和常识推断描述对象所在的位置。而在图文识别上,讯飞星火大模型V4.0能力也进一步升级,在科研、金融、医疗、司法、办公等场景的应用效果已领
- 中科曙光C/C++研发工程师二面
TrustZone_
ARM/Linux嵌入式面试c语言c++开发语言
自我介绍;针对项目:CNN模型、损失函数、评价指标、改进方向、计算加速;CNN模型CNN,即卷积神经网络,是一种专门用于处理具有类似网格结构数据的深度学习模型。它通过卷积层和池化层提取图像特征,并通过全连接层进行分类或回归预测。CNN在图像识别、目标检测和图像生成等领域取得了巨大成功。具体来说,CNN的模型结构包括输入层、卷积层、激活函数、池化层、全连接层和输出层。输入层接收图像数据,并将其转换为
- 产生式系统实验头歌实验测试不通过解决(人工智能)
兜里没有一毛钱
人工智能pythonnumpy数据分析人工智能机器学习
任务描述本关任务:编写一个使用产生式方法识别动物的系统。编程要求根据提示,在右侧编辑器补充代码,完成产生式系统——动物识别系统的操作,最后达到输入动物特征,输出动物类型的结果。特别说明在这个实验中,存在一个实验现象,就是你的自测运行输出结果与实验要求输出结果一模一样也不能通过,为什么呢?答:这个不知道算不算是头歌实验平台存在bug,一般我们在编写程序代码中,要求格式都是英文格式,但是在这个实验测试
- 改进yolov8工业缺陷检测+swin+transformer
qq1309399183
计算机视觉实战项目集合YOLOtransformer深度学习人工智能计算机视觉机器学习神经网络
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 基于 Python 的机器学习模型部署到 Flask Web 应用:从训练到部署的完整指南
m0_74825223
python机器学习flask
目录引言技术栈步骤一:数据预处理步骤二:训练机器学习模型步骤三:创建FlaskWeb应用步骤四:测试Web应用步骤五:模型的保存与加载保存模型加载模型并在Flask中使用步骤六:Web应用的安全性考量示例:简单的输入验证示例:自定义错误处理示例:使用Flask-JWT-Extended进行认证结论参考资料引言在当今数据驱动的时代,机器学习模型已经广泛应用于各行各业,从金融、医疗到教育等领域。然而,
- 智能体(AI Agent)全解析:概念、原理至应用深度探索
网安猫叔
人工智能语言模型自然语言处理AIGC机器学习
一、智能体概念的深度剖析1.1智能体(Agent)的本质智能体,作为人工智能领域的一颗璀璨明珠,是那些能够主动感知周遭环境、自主决策并付诸实践的系统实体。它们不仅拥有自主性、交互性、反应灵敏及高度适应性等鲜明特征,更在复杂多变的情境中展现出卓越的自我管理与任务执行能力。智能体的诞生,标志着人工智能技术从机械式的规则遵循迈向了更为灵活、智能的自主决策新时代。智能体的核心精髓在于其内置的学习与决策引擎
- 改进yolov8缺陷检测+swin+transformer
QQ_1309399183
计算机视觉实战项目集锦YOLOtransformer深度学习人工智能计算机视觉opencv机器学习
使用NEU-DET数据集进行缺陷检测的YOLOv8改进模型应用详解在现代工业生产过程中,质量控制是至关重要的一个环节。随着机器视觉技术和人工智能算法的发展,基于深度学习的方法已经成为自动化缺陷检测的重要工具。本篇将介绍一种基于NEU-DET数据集,利用YOLOv8及其改进版本(包含坐标注意力机制和SwinTransformer)进行缺陷检测的应用开发过程。我们将详细探讨从数据准备到模型训练,再到最
- 全网最全Stable diffusion保姆级教程「安装-配置-画图」,小白必收藏!!
AI想象家
stablediffusionAI作画midjourney人工智能深度学习
随着chatgpt爆火之后,越来越多的人开始关注人工智能,人工智能相关的其他应用如AI绘画,也再次得到人们的关注。AI绘画的确很上头,最近几天小编也研究一下,这里把研究的过程以及中间遇到的问题整理一下,我这里遇到的问题,相信新入门的小白也会遇到,希望本文对你能有一定的帮助。给大家带来了全新保姆级教程资料包(文末可获取)目前常用的AI绘画工具主要有两种:stablediffusion和midjour
- 【Python】成功解决ValueError: zero-size array to reduction operation minimum which has no identity
高斯小哥
BUG解决方案合集python新手入门学习debug
【Python】成功解决ValueError:zero-sizearraytoreductionoperationminimumwhichhasnoidentity个人主页:高斯小哥高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程希望得到您的订阅和支持~创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、
- 开源AI图像工具—Stable Diffusion
蚂蚁在飞-
人工智能stablediffusion
StableDiffusion是一种基于深度学习的生成式模型,用于图像生成、图像修复和风格转换等任务。它是由StabilityAI和CompVis团队联合开发的。StableDiffusion在生成高质量图像方面表现出色,并且是开源的,可以自由使用和扩展。StableDiffusion的核心技术1.扩散模型(DiffusionModels):•基于概率生成模型。•从噪声中逐步反向生成清晰的图像。•
- 机器学习:scikit-learn 和 Jupyter Notebook(推荐初学者使用google colab)
wyc9999ww
机器学习scikit-learnjupyter人工智能python
对于初学者来说,scikit-learn是一个理想的机器学习入门工具。不仅提供了丰富的算法和功能,还通过一致的API设计,确保能够快速上手并进行各种机器学习任务。通过使用scikit-learn,可以专注于理解和实践机器学习的核心概念,而不必过多担心底层实现细节。所以scikit-learn能轻松实现从数据预处理到模型训练和评估的完整流程。此外在推荐一个适合初学者的深度学习平台工具googleco
- AI赋能:高职院校实验实训教学如何拥抱人工智能浪潮?
武汉唯众智创
人工智能实训人工智能实验实训教学
随着信息技术的迅猛发展,人工智能技术已成为推动社会各行业转型升级的核心力量。它不仅在提升生产效率、优化管理流程、提高服务质量方面发挥着关键作用,也深刻影响着高职教育的专业发展和课程教学内容的改革。作为培养专业技术技能人才的摇篮,高职院校必须创新其教学模式和方法,以适应新的发展需求,从而培育出能够适应未来技术变革的高素质人才。特别是在实验实训教学领域,人工智能的融入为职业教育改革提供了新的思路和工具
- 【深度学习】CrossEntropyLoss需要手动softmax吗?
zz的学习笔记本
深度学习深度学习人工智能
【深度学习】CrossEntropyLoss需要手动softmax吗?问题:CrossEntropyLoss需要手动softmax吗?答案:不需要官方文档代码解释问题:CrossEntropyLoss需要手动softmax吗?之前用pytorch实现自己的网络时,使用CrossEntropyLoss的时候将网路输出经softmax激活层后再计算CrossEntropyLoss。答案:不需要调用了损
- 有趣的python代码实例_Python之路:200个Python有趣的小例子一网打尽
weixin_39845406
有趣的python代码实例
概述博主最近在学习python,看完了一整套学习视频,然后呃呃呃,还是用不太流畅。碰巧在全球最大的同性交友论坛GayHub(呸!是开源代码托管平台Github)上面发现了一个项目,该项目列举了200多个Python小例子,Python基础、Python坑点、Python字符串和正则、Python绘图、Python日期和文件、Web开发、数据科学、机器学习、深度学习、TensorFlow、Pytor
- 机器学习数学基础-定积分应用-经济问题
华东算法王(原聪明的小孩子
小孩哥解析宋浩微积分算法
定积分在经济学中的应用广泛,特别是用来解决与累积量、平均值、总收入、成本、利润等相关的问题。以下是定积分在经济学中的几个常见应用场景:1.总收入和总成本的计算在经济学中,定积分常用于计算总收入、总成本等累积量。如果给定价格函数和需求函数或供应函数,定积分可以帮助我们计算从某一数量到另一数量之间的总收入或总成本。总收入:假设某商品的价格随数量的变化而变化,价格函数为(p(x)),其中(x)表示销售的
- 迁移学习与RBF神经网络
fanxbl957
人工智能理论与实践迁移学习神经网络人工智能
迁移学习与RBF神经网络一、引言在机器学习和深度学习领域,迁移学习和神经网络都是备受关注的重要技术。迁移学习旨在将从一个或多个源任务中学习到的知识应用到目标任务中,以加快目标任务的学习过程,提高学习效果,尤其在数据稀缺或训练资源有限的情况下展现出显著优势。而RBF(径向基函数)神经网络作为一种经典的神经网络结构,以其独特的函数逼近能力和良好的局部逼近特性,在众多领域取得了出色的性能表现。将迁移学习
- “数据飞轮” 理念焕新,助力 2025 企业数智化发展
大数据大模型
2024年,全球科技领域在人工智能浪潮的席卷下加速前行,数字化转型进程也随之踏入全新阶段。在这一背景下,数据飞轮理念延续“以数据消费促资产建设,以数据消费助业务发展”的核心内涵,实现焕新升级。在2025年,升级后的数据飞轮2.0,将AI视作数智化的核心竞争力,借助AI技术推动企业更普惠的数据消费。“数据飞轮”2.0的理念,带来了多方面的显著升级。其一,它将AI技术深度融入数据生产、管理与应用各环节
- 用大数据“喂养”出来的AI模型ChatGPT 爆火是大数据、大算力、强算法的支撑,中国缺乏的什么?
Ai17316391579
深度学习服务器人工智能
先来了解一下ChatGPT的基本情况ChatGPT本质属于生成式人工智能,属于无监督或半监督的机器学习。与之相关的还有Discriminativemodeling区分式模型,区分式模型大多属于监督式学习。生成性人工智能目前有两种主要的框架:GAN(GenerativeAdversarialNetwork)和GPT(GenerativePre-trainedTransformer)。GAN目前广泛应
- 英伟达最新的算力芯片Blackwell芯片名为GB200
算力资源比较多
算力智算大模型人工智能gpu算力语言模型大数据推荐算法
英伟达最新的算力芯片相关信息如下:Blackwell芯片:英伟达在2024年6月2日由创始人兼CEO黄仁勋宣布,其Blackwell芯片已开始投产。第一款Blackwell芯片名为GB200,被宣称为目前“全球最强大的芯片”。Blackwell芯片基于新的BlackwellGPU架构,专为人工智能模型设计。每个B200GPU包含2080亿个晶体管,GB200由两个这样的GPU和一个GraceCPU
- Python语言的编程范式
AI向前看
包罗万象golang开发语言后端
Python语言的编程范式Python是一种广泛使用的高级编程语言,它因其简单易读的语法和强大的功能而受到程序员的喜爱。自1991年由荷兰人GuidolvanRossum首次发布以来,Python的发展迅速,其应用范围涵盖了Web开发、数据分析、人工智能、科学计算、自动化等多个领域。本文将深入探讨Python的编程范式,帮助读者更好地理解该语言的特性和优势。1.什么是编程范式编程范式是对程序设计风
- 火山引擎数据飞轮2.0:聚焦Data+AI,驱动企业数智化转型
大数据
数字化浪潮席卷全球,数据与人工智能的融合正给各行各业带来巨大变革,不仅重塑数据处理流程,更在决策支持、业务优化、产品创新等多个维度上展现巨大的潜力。近期,火山引擎数智平台技术和产品专家受邀出席DataFun首届“数据与人工智能解决方案大会”,围绕数据飞轮2.0模式,及Data+AI领域热门话题ChatBI、多模态数据湖展开分享。据介绍,2023年4月火山引擎发布了数据飞轮,其内核为“以数据消费促资
- AI未来趋势:AIGC浪潮下看AI训练师如何塑造智能未来(技术变革)
用心去追梦
前端htmlcss
在AIGC(AIGeneratedContent,人工智能生成内容)浪潮下,AI训练师扮演着至关重要的角色,他们不仅推动了技术的发展,还在确保这些技术能够安全、高效地服务于社会方面发挥了重要作用。以下是AI训练师如何塑造智能未来的几个关键方面:1.技术变革与创新算法与模型训练预训练:通过大规模无标注数据的学习,构建具备基础语言理解和生成能力的基座模型。这一过程为后续更精细的任务打下了坚实的基础。指
- 深入理解AIGC背后的核心算法:GAN、Transformer与Diffusion Models
忘梓.
杂文AIGC算法生成对抗网络
深入理解AIGC背后的核心算法:GAN、Transformer与DiffusionModels前言随着人工智能技术的发展,AIGC(AIGeneratedContent,人工智能生成内容)已经不再是科幻电影中的幻想,而成为了现实生活中的一种新兴力量。无论是自动生成文章、绘制图像、生成音乐还是创作视频,AIGC都在各个内容创作领域崭露头角。然而,这些“智能创作”的背后究竟依赖于哪些算法?今天,我们将
- AIGC - 深度洞察如何对大模型进行微调以满足特定需求
网罗开发
AI大模型人工智能AIGC
网罗开发(视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:COC上海社区主理
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多