基于ESP8266的四旋翼无人机代码分享,该无人机可以爬墙哦

1.整机效果和电路图如下:

基于ESP8266的四旋翼无人机代码分享,该无人机可以爬墙哦_第1张图片
基于ESP8266的四旋翼无人机代码分享,该无人机可以爬墙哦_第2张图片

基于ESP8266的四旋翼无人机代码分享,该无人机可以爬墙哦_第3张图片

2.代码:

代码链接在:https://github.com/AnishDey27/Wall-Climbing-Drone/blob/main/Node%20MCU%20Codes/3_Drone_FInal.ino
源码贴出来吧:
#include
#include
#include
WiFiUDP UDP;
char packet[4];
//IPAddress local_IP(192, 168, 203, 158);
//IPAddress gateway(192, 168, 1, 158);
//IPAddress subnet(255, 255, 0, 0);
//_________________________________________//聽
int ESCout_1 ,ESCout_2 ,ESCout_3 ,ESCout_4;
int input_PITCH = 50;
int input_ROLL = 50;
int input_YAW = 50;
volatile int input_THROTTLE = 0;
int Mode = 0;
boolean wall_car_init = false;
boolean set_motor_const_speed = false;
int8_t target_axis=0;
int8_t target_dirr=0;
boolean wheal_state = false;
uint8_t pwm_stops;
int arr[] = {20,10,20,10};
volatile int order[] = {0,0,0,0}; //volatile key
int temp_arr[] = {0,0,0,0};
int pulldown_time_temp[] = {0,0,0,0,0};
int pulldown_time[] = {0,0,0,0,0};
volatile int pulldown_time_temp_loop[] = {0,0,0,0,0}; //volatile key
uint8_t pin[] = {14,12,13,15};
int i,j,temp_i,temp;
boolean orderState1,orderState2,orderState3,orderState4,Timer_Init;
int16_t gyro_x, gyro_y, gyro_z, acc_x, acc_y, acc_z, temperature, acc_total_vector;
float angle_pitch, angle_roll,angle_yaw,prev_roll,prev_pitch,prev_yaw;
boolean set_gyro_angles;
float angle_roll_acc, angle_pitch_acc;
float angle_pitch_output, angle_roll_output, angle_yaw_output;
long Time, timePrev;
float elapsedTime,P_factor;
float acceleration_x,acceleration_y,acceleration_z;
long gyro_x_cal, gyro_y_cal, gyro_z_cal;
float pitch_PID,roll_PID,yaw_PID;
float roll_error, roll_previous_error, pitch_error, pitch_previous_error, yaw_error, yaw_previous_error;
float roll_pid_p, roll_pid_d, roll_pid_i, pitch_pid_p, pitch_pid_i, pitch_pid_d, yaw_pid_p, yaw_pid_i, yaw_pid_d;
float roll_desired_angle, pitch_desired_angle, yaw_desired_angle;
double twoX_kp=5; //5
double twoX_ki=0.003; //0.003
double twoX_kd=1.4; //1.4
double yaw_kp=8; //5
double yaw_ki=0; //0.005
double yaw_kd=4; //2.8

void ICACHE_RAM_ATTR PWM_callback() {
switch (pwm_stops){
case 0:
pulldown_time_temp[0] = pulldown_time_temp_loop[0];
pulldown_time_temp[1] = pulldown_time_temp_loop[1];
pulldown_time_temp[2] = pulldown_time_temp_loop[2];
pulldown_time_temp[3] = pulldown_time_temp_loop[3];
pulldown_time_temp[4] = pulldown_time_temp_loop[4];
pwm_stops = 1;
if(input_THROTTLE!=0){GPOS = (1 << 14);GPOS = (1 << 12);GPOS = (1 << 15);GPOS = (1 << 13);}
timer1_write(80pulldown_time_temp[0]);
break;
case 1:
pwm_stops = 2;
GPOC = (1 << pin[order[0]]);
timer1_write(80
pulldown_time_temp[1]);
break;
case 2:
pwm_stops = 3;
GPOC = (1 << pin[order[1]]);
timer1_write(80pulldown_time_temp[2]);
break;
case 3:
pwm_stops = 4;
GPOC = (1 << pin[order[2]]);
timer1_write(80
pulldown_time_temp[3]);
break;
case 4:
pwm_stops = 0;
GPOC = (1 << pin[order[3]]);
timer1_write(80*pulldown_time_temp[4]);
break;
}
}

void setup() {
pinMode(D5,OUTPUT);pinMode(D6,OUTPUT);pinMode(D7,OUTPUT);pinMode(D8,OUTPUT);pinMode(D0,OUTPUT);
GPOC = (1 << 14);GPOC = (1 << 12);GPOC = (1 << 13);GPOC = (1 << 15);
digitalWrite(D0,LOW);
Serial.begin(115200);
WiFi.mode(WIFI_STA);
WiFi.begin(“Redmi_R”, “deywifi3210”);
while (WiFi.status() != WL_CONNECTED){ delay(500);}
Serial.println(WiFi.localIP());
UDP.begin(9999);
delay(6000);
////
Wire.begin();
Wire.setClock(400000);
Wire.beginTransmission(0x68);
Wire.write(0x6B);
Wire.write(0x00);
Wire.endTransmission();
Wire.beginTransmission(0x68);
Wire.write(0x1C); //accel
Wire.write(0x08); //±4g
Wire.endTransmission();
Wire.beginTransmission(0x68);
Wire.write(0x1B); //gyro
Wire.write(0x18); //2000dps
Wire.endTransmission();
Wire.beginTransmission(0x68);
Wire.write(0x1A);
Wire.write(0x03);
Wire.endTransmission();
//
//
for (int cal_int = 0; cal_int < 4000 ; cal_int ++){
if(cal_int % 125 == 0)Serial.print(“.”);
Wire.beginTransmission(0x68);
Wire.write(0x3B);
Wire.endTransmission();
Wire.requestFrom(0x68,14);
while(Wire.available() < 14);
acc_y = Wire.read()<<8|Wire.read();
acc_x = Wire.read()<<8|Wire.read();
acc_z = Wire.read()<<8|Wire.read();
temperature = Wire.read()<<8|Wire.read();
gyro_y = Wire.read()<<8|Wire.read();
gyro_x = Wire.read()<<8|Wire.read();
gyro_z = Wire.read()<<8|Wire.read();
gyro_x_cal += gyro_x;
gyro_y_cal += gyro_y;
gyro_z_cal += gyro_z;
delayMicroseconds(100);
}
gyro_x_cal /= 4000;
gyro_y_cal /= 4000;
gyro_z_cal /= 4000;
timer1_attachInterrupt(PWM_callback);
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_SINGLE);
}

void loop() {
//--------------------------------MPU6050----------------------------//
timePrev = Time;
Time = micros();
elapsedTime = (float)(Time - timePrev) / (float)1000000;
Wire.beginTransmission(0x68);
Wire.write(0x3B);
Wire.endTransmission();
Wire.requestFrom(0x68,14);
while(Wire.available() < 14);
acc_y = Wire.read()<<8|Wire.read();
acc_x = Wire.read()<<8|Wire.read();
acc_z = Wire.read()<<8|Wire.read();
temperature = Wire.read()<<8|Wire.read();
gyro_y = Wire.read()<<8|Wire.read();
gyro_x = Wire.read()<<8|Wire.read();
gyro_z = Wire.read()<<8|Wire.read();
gyro_x -= gyro_x_cal;
gyro_y -= gyro_y_cal;
gyro_z -= gyro_z_cal;
acceleration_x = gyro_x * (-0.0610687023);
acceleration_y = gyro_y * (-0.0610687023);
acceleration_z = gyro_z * (-0.0610687023);
angle_pitch += acceleration_x * elapsedTime;
angle_roll += acceleration_y * elapsedTime;
angle_yaw += acceleration_z * elapsedTime;
if(angle_yaw >= 180.00){angle_yaw-=360;}
else if(angle_yaw < -180.00){angle_yaw+=360;}
angle_roll_acc = atan(acc_x/sqrt(acc_y acc_y + acc_zacc_z))(-57.296);
angle_pitch_acc = atan(acc_y/sqrt(acc_x
acc_x + acc_z*acc_z))*57.296;
angle_pitch_acc -= 4;
angle_roll_acc += 9;
if(set_gyro_angles){
angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004;
angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004;
}
else{
angle_pitch = angle_pitch_acc;
angle_roll = angle_roll_acc;
set_gyro_angles = true;
}
angle_pitch_output = angle_pitch_output * 0.9 + angle_pitch * 0.1;
angle_roll_output = angle_roll_output * 0.9 + angle_roll * 0.1;
angle_yaw_output = angle_yaw_output * 0.9 + angle_yaw * 0.1;

//--------------------------PID_Calculation--------------------------//
if(wall_car_init==false){
roll_desired_angle = 3*(input_ROLL - 50)/10.0;
pitch_desired_angle = 3*(input_PITCH - 50)/10.0;
}
P_factor = 0.001286376*input_THROTTLE + 0.616932;

roll_error = angle_roll_output - roll_desired_angle;
pitch_error = angle_pitch_output - pitch_desired_angle;
yaw_error = angle_yaw_output;

roll_pid_p = P_factortwoX_kproll_error;
pitch_pid_p = P_factortwoX_kppitch_error;
yaw_pid_p = yaw_kp*yaw_error;

roll_pid_i += twoX_kiroll_error;
pitch_pid_i += twoX_ki
pitch_error;
yaw_pid_i += yaw_ki*yaw_error;

roll_pid_d = twoX_kdacceleration_y;
pitch_pid_d = twoX_kd
acceleration_x;
yaw_pid_d = yaw_kd*acceleration_z;

if(roll_pid_i > 0 && roll_error < 0){roll_pid_i=0;}
else if(roll_pid_i < 0 && roll_error > 0){roll_pid_i=0;}
if(pitch_pid_i > 0 && pitch_error < 0){pitch_pid_i=0;}
else if(pitch_pid_i < 0 && pitch_error > 0){pitch_pid_i=0;}
if(yaw_pid_i > 0 && yaw_error < 0){yaw_pid_i=0;}
else if(yaw_pid_i < 0 && yaw_error > 0){yaw_pid_i=0;}

roll_PID = roll_pid_p + roll_pid_i + roll_pid_d;
pitch_PID = pitch_pid_p + pitch_pid_i + pitch_pid_d;
yaw_PID = yaw_pid_p + yaw_pid_i + yaw_pid_d;

ESCout_1 = input_THROTTLE + pitch_PID - roll_PID + yaw_PID;
ESCout_2 = input_THROTTLE + pitch_PID + roll_PID - yaw_PID;
ESCout_3 = input_THROTTLE - pitch_PID + roll_PID + yaw_PID;
ESCout_4 = input_THROTTLE - pitch_PID - roll_PID - yaw_PID;

//------------------------- CarMode -----------------------------//
if(Mode1 && (abs(input_ROLL-50)>30 || abs(input_PITCH-50)>30)){
wall_car_init = true;
if(input_ROLL > 30){target_axis = 1; target_dirr = 1;}
else if(input_ROLL < -30){target_axis = 1; target_dirr = -1;}
else if(input_PITCH > 30){target_axis = 2; target_dirr = 1;}
else if(input_PITCH < -30){target_axis = 2; target_dirr = -1;}
}
else if(Mode
0){wall_car_init=false;set_motor_const_speed=false;}

if(wall_car_inittrue){
if(target_axis=1){roll_desired_angle = 90target_dirr;}
else if(target_axis=2){pitch_desired_angle = 90
target_dirr;}
if((abs(acceleration_x)<15 && abs(acceleration_y)<15) && (abs(angle_roll_output)>45 || abs(angle_pitch_output)>45)){set_motor_const_speed = true;}
if(set_motor_const_speed
true){
ESCout_1 = 1100; ESCout_2 = 1103; ESCout_3 = 1106; ESCout_4 = 1109;
if(input_ROLL>50 && wheal_state == true){digitalWrite(D0,HIGH);}
}
}
//----------------------------------------------------------------//

if(ESCout_1>1199) ESCout_1=1199;
else if(ESCout_1<1) ESCout_1=1;
if(ESCout_2>1199) ESCout_2=1199;
else if(ESCout_2<1) ESCout_2=1;
if(ESCout_3>1199) ESCout_3=1199;
else if(ESCout_3<1) ESCout_3=1;
if(ESCout_4>1199) ESCout_4=1199;
else if(ESCout_4<1) ESCout_4=1;

//----------------------------- Sorting -------------------------------//
arr[0]=ESCout_1;arr[1]=ESCout_2;arr[2]=ESCout_3;arr[3]=ESCout_4;
temp_arr[0] = arr[0];temp_arr[1] = arr[1];temp_arr[2] = arr[2];temp_arr[3] = arr[3];
for (i = 0; i < 3; i++){
temp_i = i;
for (j = i+1; j < 4; j++)
if (temp_arr[j] < temp_arr[temp_i])
temp_i = j;
temp = temp_arr[temp_i];
temp_arr[temp_i] = temp_arr[i];
temp_arr[i] = temp;
}
pulldown_time[0]=temp_arr[0];
pulldown_time[1]=temp_arr[1]-temp_arr[0];
pulldown_time[2]=temp_arr[2]-temp_arr[1];
pulldown_time[3]=temp_arr[3]-temp_arr[2];
pulldown_time[4]=1200-temp_arr[3];
if(pulldown_time[1]==0){pulldown_time[1]=1;}
if(pulldown_time[2]==0){pulldown_time[2]=1;}
if(pulldown_time[3]==0){pulldown_time[3]=1;}
if(pulldown_time[4]==0){pulldown_time[4]=1;}
pulldown_time_temp_loop[0] = pulldown_time[0];
pulldown_time_temp_loop[1] = pulldown_time[1];
pulldown_time_temp_loop[2] = pulldown_time[2];
pulldown_time_temp_loop[3] = pulldown_time[3];
pulldown_time_temp_loop[4] = pulldown_time[4];
orderState1=false;orderState2=false;orderState3=false;orderState4=false;
for(int k=0; k <4; k++){
if(temp_arr[0] == arr[k] && orderState1 == false){ order[0] = k; orderState1=true;}
else if(temp_arr[1] == arr[k] && orderState2 == false){ order[1] = k; orderState2=true;}
else if(temp_arr[2] == arr[k] && orderState3 == false){ order[2] = k; orderState3=true;}
else if(temp_arr[3] == arr[k] && orderState4 == false){ order[3] = k; orderState4=true;}
}

//----------------------------- WiFi ----------------------------------//
int packetSize = UDP.parsePacket();
if (packetSize) {
int len = UDP.read(packet, 4);
if(len>0){packet[len] = ‘\0’;}
input_ROLL = int(packet[0]);
input_PITCH = int(packet[1]);
input_THROTTLE = int(packet[2])*24;
Mode = int(packet[3]);
}
if(input_THROTTLE == 0){
angle_yaw_output=0;angle_yaw=0;yaw_PID=0;
yaw_pid_p=0;yaw_pid_i=0;yaw_pid_d=0;twoX_ki=0;
}
//-------------------------------------------------------------------//

//Serial.print(input_ROLL);Serial.print(" “);
//Serial.print(input_PITCH);Serial.print(” “);
//Serial.print(input_THROTTLE);Serial.print(” “);
//Serial.print(angle_roll_output,0);Serial.print(” “);
//Serial.print(angle_pitch_output,0);//Serial.print(” ");
//Serial.println(input_THROTTLE);

if(wheal_state == false){digitalWrite(D0,LOW);}

if(Timer_Init == false){
timer1_write(80);
Timer_Init = true;
}
wheal_state = !wheal_state;
while(Time - timePrev <1200);
}

3.Andriod APP链接:

基于ESP8266的四旋翼无人机代码分享,该无人机可以爬墙哦_第4张图片
基于ESP8266的四旋翼无人机代码分享,该无人机可以爬墙哦_第5张图片
APP链接:
https://github.com/AnishDey27/Wall-Climbing-Drone/tree/main/Android%20App

你可能感兴趣的:(无人机)