数据描述
German Credit Data, 我们来看看数据的格式,
A1 到 A15 为 15个不同类别的特征,A16 为 label 列,一共有 690条数据,下面列举其中一条当作例子:
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
b
30.83
0
u
g
w
v
1.25
t
t
01
f
g
00202
0
+
Attribute Information:
A1: b, a.
A2: continuous.
A3: continuous.
A4: u, y, l, t.
A5: g, p, gg.
A6: c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff.
A7: v, h, bb, j, n, z, dd, ff, o.
A8: continuous.
A9: t, f.
A10: t, f.
A11: continuous.
A12: t, f.
A13: g, p, s.
A14: continuous.
A15: continuous.
A16: +,- (class attribute)
Missing Attribute Values:
37 cases (5%) have one or more missing values. The missing
values from particular attributes are:
A1: 12
A2: 12
A4: 6
A5: 6
A6: 9
A7: 9
A14: 13
Class Distribution
+: 307 (44.5%)
-: 383 (55.5%)
数据处理与数据分析
下面展示一下数据处理流程,主要是处理了一下缺失值,然后根据特征按连续型和离散型进行分别处理,使用了 sklearn 里面的 LogisticRegression 包,下面的代码都有很详细的注释。
import pandas as pd
import numpy as np
import matplotlib as plt
import seaborn as sns
# 读取数据
data = pd.read_csv("./crx.data")
# 给数据增加列标签
data.columns = ["f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "label"]
# 替换 label 映射
label_mapping = {
"+": 1,
"-": 0
}
data["label"] = data["label"].map(label_mapping)
# 处理缺省值的方法
data = data.replace("?", np.nan)
# 将 object 类型的列转换为 float型
data["f2"] = pd.to_numeric(data["f2"])
data["f14"] = pd.to_numeric(data["f14"])
# 连续型特征如果有缺失值的话,用它们的平均值替代
data["f2"] = data["f2"].fillna(data["f2"].mean())
data["f3"] = data["f3"].fillna(data["f3"].mean())
data["f8"] = data["f8"].fillna(data["f8"].mean())
data["f11"] = data["f11"].fillna(data["f11"].mean())
data["f14"] = data["f14"].fillna(data["f14"].mean())
data["f15"] = data["f15"].fillna(data["f15"].mean())
# 离散型特征如果有缺失值的话,用另外一个不同的值替代
data["f1"] = data["f1"].fillna("c")
data["f4"] = data["f4"].fillna("s")
data["f5"] = data["f5"].fillna("gp")
data["f6"] = data["f6"].fillna("hh")
data["f7"] = data["f7"].fillna("ee")
data["f13"] = data["f13"].fillna("ps")
tf_mapping = {
"t": 1,
"f": 0
}
data["f9"] = data["f9"].map(tf_mapping)
data["f10"] = data["f10"].map(tf_mapping)
data["f12"] = data["f12"].map(tf_mapping)
# 给离散的特征进行 one-hot 编码
data = pd.get_dummies(data)
from sklearn.linear_model import LogisticRegression
# 打乱顺序
shuffled_rows = np.random.permutation(data.index)
# 划分本地测试集和训练集
highest_train_row = int(data.shape[0] * 0.70)
train = data.iloc[0:highest_train_row]
loc_test = data.iloc[highest_train_row:]
# 去掉最后一列 label 之后的才是 feature
features = train.drop(["label"], axis = 1).columns
model = LogisticRegression()
X_train = train[features]
y_train = train["label"] == 1
model.fit(X_train, y_train)
X_test = loc_test[features]
test_prob = model.predict(X_test)
test_label = loc_test['label']
# 本地测试集上的准确率
accuracy_test = (test_prob == loc_test["label"]).mean()
print accuracy_test
0.835748792271
from sklearn import cross_validation, metrics
#验证集上的auc值
test_auc = metrics.roc_auc_score(test_label, test_prob)#验证集上的auc值
print test_auc
0.835748792271
简单使用了一下逻辑回归,发现准确率是 0.835748792271,AUC 值是 0.835748792271,效果还不错,接下来对模型进行优化来进一步提高准确率。