#!/usr/bin/python
# -*- coding:utf-8 -*-
class Node():
def __init__(self, state, parent, action):
self.state = state
self.parent = parent
self.action = action
class StackFrontier():
def __init__(self):
self.frontier = []
def add(self, node):
self.frontier.append(node)
def contains_state(self, state):
return any(node.state == state for node in self.frontier)
def empty(self):
return len(self.frontier) == 0
def remove(self):
if self.empty():
raise Exception("empty frontier")
else:
#please add your code here to get a node from the frontier, according to FIBO
#请在下面添加你的代码,从frontier表中按照后进先出的顺序移除一个结点,并将移除的结点给node
node = self.frontier[-1]
#after remove a node ,your frontier should adaptive accordingly
#在移除了一个结点后,你的frontier表应该相应的更新
del self.frontier[-1]
return node
class QueueFrontier(StackFrontier):
def remove(self):
if self.empty():
raise Exception("empty frontier")
else:
#请添加你的代码,按照先进先出的顺序移除结点
node = self.frontier[0]
#请更新frontier表,使得frontier表为移除了一个结点剩下的结点组成
del self.frontier[0]
return node
class Maze():
def __init__(self, filename):
# Read file and set height and width of maze
with open(filename) as f:
contents = f.read()
# Validate start and goal
if contents.count("A") != 1:
raise Exception("maze must have exactly one start point")
if contents.count("B") != 1:
raise Exception("maze must have exactly one goal")
# Determine height and width of maze
contents = contents.splitlines()
self.height = len(contents)
self.width = max(len(line) for line in contents)
# Keep track of walls
self.walls = []
for i in range(self.height):
row = []
for j in range(self.width):
try:
if contents[i][j] == "A":
self.start = (i, j)
row.append(False)
elif contents[i][j] == "B":
self.goal = (i, j)
row.append(False)
elif contents[i][j] == " ":
row.append(False)
else:
row.append(True)
except IndexError:
row.append(False)
self.walls.append(row)
self.solution = None
def print(self):
solution = self.solution[1] if self.solution is not None else None
print()
for i, row in enumerate(self.walls):
for j, col in enumerate(row):
if col:
print("#", end="")
elif (i, j) == self.start:
print("A", end="")
elif (i, j) == self.goal:
print("B", end="")
elif solution is not None and (i, j) in solution:
print("*", end="")
else:
print(" ", end="")
print()
print()
def neighbors(self, state):
row, col = state
candidates = [
("up", (row - 1, col)),
("down", (row + 1, col)),
("left", (row, col - 1)),
("right", (row, col + 1))
]
result = []
for action, (r, c) in candidates:
if 0 <= r < self.height and 0 <= c < self.width and not self.walls[r][c]:
result.append((action, (r, c)))
return result
def solve(self):
"""Finds a solution to maze, if one exists."""
# Keep track of number of states explored
self.num_explored = 0
# Initialize frontier to just the starting position
start = Node(state=self.start, parent=None, action=None)
#please add the frontier of stackfroniter or queuefrontier
#请声明栈结构或者队列的frontier实例
"""
每一次都改的地方!!!
"""
frontier = QueueFrontier()
#frontier = StackFrontier()
frontier.add(start)
# Initialize an empty explored set
self.explored = set()
# Keep looping until solution found
while True:
# If nothing left in frontier, then no path
if frontier.empty():
raise Exception("no solution")
# Choose a node from the frontier,please finish the sentence
node = frontier.remove()
self.num_explored += 1
# If node is the goal, then we have a solution
if node.state == self.goal:
actions = []
cells = []
while node.parent is not None:
actions.append(node.action)
cells.append(node.state)
node = node.parent
actions.reverse()
cells.reverse()
self.solution = (actions, cells)
return
# Mark node as explored
self.explored.add(node.state)
# Add neighbors to frontier
for action, state in self.neighbors(node.state):
if not frontier.contains_state(state) and state not in self.explored:
child = Node(state=state, parent=node, action=action)
frontier.add(child)
def output_image(self, filename, show_solution=True, show_explored=False):
from PIL import Image, ImageDraw
cell_size = 50
cell_border = 2
# Create a blank canvas
img = Image.new(
"RGBA",
(self.width * cell_size, self.height * cell_size),
"black"
)
draw = ImageDraw.Draw(img)
solution = self.solution[1] if self.solution is not None else None
for i, row in enumerate(self.walls):
for j, col in enumerate(row):
# Walls
if col:
fill = (40, 40, 40)
# Start
elif (i, j) == self.start:
fill = (255, 0, 0)
# Goal
elif (i, j) == self.goal:
fill = (0, 171, 28)
# Solution
elif solution is not None and show_solution and (i, j) in solution:
fill = (220, 235, 113)
# Explored
elif solution is not None and show_explored and (i, j) in self.explored:
fill = (212, 97, 85)
# Empty cell
else:
fill = (237, 240, 252)
# Draw cell
draw.rectangle(
([(j * cell_size + cell_border, i * cell_size + cell_border),
((j + 1) * cell_size - cell_border, (i + 1) * cell_size - cell_border)]),
fill=fill
)
img.save(filename)
"""if len(sys.argv) != 2:
sys.exit("Usage: python maze.py maze.txt")"""
m = Maze("maze3.txt")
print("Maze:")
m.print()
print("Solving...")
m.solve()
print("States Explored:", m.num_explored)
print("Solution:")
m.print()
m.output_image("maze3_广度优先.png", show_explored=True)
#####B#
##### #
#### #
#### ##
##
A######
### #########
# ################### # #
# #### # # # #
# ################### # # # #
# # # # #
##################### # # # #
# ## # # # #
# # ## ### ## ######### # # #
# # # ##B# # # #
# # ## ################ # # #
### ## #### # # #
### ############## ## # # # #
### ## # # # #
###### ######## ####### # # #
###### #### # #
A ######################
## #
## ## #
#B # #
# ## ##
##
A######
下图中黑色格子代表迷宫中的墙,深红色代表起点,深绿色代表终点,浅红色代表走过的错路,浅绿色代表走到正确的路线。
算法引自——人工智能 一种现代的方法(第3版)
代码源自网络,仅用于教学实验
本文来源于实验报告