- Chrome下载视频的插件
爱编程的喵喵
Windows实用技巧windowschrome下载视频
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Chrome下载视频的插件,希望能对
- [水]与grok聊Java
啾啾大学习
水java开发语言
摘要:AI时代,二本毕业一般工资一般履历的java程序员要怎么做才能不被淘汰呢?3步之内必有解药?AI带来的问题让AI解决?转行么?先水一篇吧(我知道可能不如去学习,但是我要是学习好我会这个样子,可恶,加油)目录1、AI带来的问题职业危机2、AI带来的机遇2.1、职业发展的帮助职业发展预测可能的职业1.AI工程师(AIEngineer)2.机器学习工程师(MachineLearningEngine
- Deepseek 使用指南与提问优化策略
西瓜拍两瓣
ai语言模型pythongpt
序言随着人工智能技术的迅猛发展,语义搜索已成为提升信息检索效率和用户体验的核心工具。DeepSeek作为一款先进的语义搜索引擎,通过自然语言处理(NLP)和机器学习技术,能够深入理解用户查询的语义意图,提供高度精准的搜索结果。本文将详细介绍DeepSeek的核心功能、集成方法,并深入探讨如何通过优化提问策略,最大化利用DeepSeek的语义搜索能力,从而提升信息检索的效率和准确性。访问DeepSe
- 【Python】OpenCV算法使用案例全解
岱宗夫up
教学opencv计算机视觉人工智能算法
OpenCV算法使用案例全解前言OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库,它提供了大量的图像和视频处理功能。从简单的图像滤波到复杂的三维重建,OpenCV涵盖了计算机视觉领域的众多算法。本文将详细介绍OpenCV中常见算法的使用案例,帮助读者更好地理解和应用这些强大的工具。一、图像处理基础(一)滤波操作滤波是图像处理中最基
- python的统计库_python--学习笔记13 统计库
weixin_39959335
python的统计库
可以先绘制散点图查看数据分布情况,然后再使用检验包进行Statsmodels用于探索数据、估计模型、并运行统计检验的Python包。importstatsmodels.apiassmy=df['sepallengthh'][:50]x=df['sepalwidth'][:50]X=sm.add_constant(x)#在现有矩阵添加截距列results=sm.OLS(y,x).fit()#fit方
- 程序员未来黄金赛道:AI与大模型引领职业新机遇
AI学习不迷路
人工智能大模型自然语言处理LLM程序员AI大模型转行
2025年,人工智能(AI)与大型机器学习模型(LLM)的爆发式发展正重塑技术行业格局。面对AI编程工具日益强大的代码生成能力,程序员的职业角色面临深刻转型。如何在这场变革中抢占先机?本文结合行业趋势与专家洞察,解析程序员未来的核心出路。一、拥抱AI与新兴技术:从“编码者”到“解决方案架构师”AI大模型工程师:随着GPT、通义灵码等代码生成工具普及,程序员的角色正从基础编码转向模型调优与场景化应用
- 神经网络之CNN文本识别
邪恶的贝利亚
神经网络cnn人工智能
1.参考我的第一篇文章了解CNN概念神经网络之CNN图像识别(torchapi调用)-CSDN博客2.框架目前对NLP的研究分析应用最多的就是RNN系列的框架,比如RNN,GRU,LSTM等等,再加上Attention,基本可以认为是NLP的标配套餐了。但是在文本分类问题上,相比于RNN,CNN的构建和训练更为简单和快速,并且效果也不差,所以仍然会有一些研究。那么,CNN到底是怎么应用到NLP上的
- 【Address Overfitting】解决过拟合的三种方法
HP-Succinum
机器学习机器学习数据分析
目录1.收集更多数据实践方法:适用场景:优缺点:2.特征选择方法介绍:实践示例:适用场景:优缺点:3.正则化(Regularization)正则化类型:实践示例:适用场景:优缺点:总结与对比总结在机器学习中,过拟合(Overfitting)是模型训练过程中常见的问题。它指的是模型在训练集上表现优秀,但在测试集或新数据上表现较差,无法很好地泛化。过拟合通常源于模型过于复杂或数据不足。本文将详细介绍解
- smolagents学习笔记系列(十)Examples - Web Browser Automation with Agents
nenchoumi3119
smolagent学习笔记python语言模型
这篇文章锁定官网教程中Examples章节中的WebBrowserAutomationwithAgents文章,主要介绍了如何设计一个由Agent驱动结合视觉模态的Web内容浏览功能,包含了以下几个功能:Navigatetowebpages:前往指定网页;Clickonelements:点击网页对象;Searchwithinpages:在页面中搜索;Handlepopupsandmodals:处理
- ES: 机器学习、专家系统、控制系统的数学映射
wishchin
AI/ES
一、基本定义1.机器学习维基定义:机器学习有下面几种定义:“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”。“机器学习是对能通过经验自动改进的计算机算法的研究”。“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。”一种经常引用的英文定义是:AcomputerprogramissaidtolearnfromexperienceEw
- Word2Vec的使用,一些思考,含示例——包括使用预训练Word2Vec模型和自训练Word2Vec模型
热爱生活的猴子
NLP_自然语言处理word2vec人工智能自然语言处理
词嵌入模型(WordEmbeddings)——Word2Vec简介:Word2Vec是由Google团队提出的一种词嵌入方法,通过神经网络模型将词语映射到一个低维的连续向量空间中。你可以直接通过它训练生成词向量,也就是一个新的Word2Vec,也可以使用预训练好的词向量,也就是那里直接用。它有两种模型结构:CBOW(ContinuousBagofWords)和Skip-Gram。CBOW(连续词袋
- 数据挖掘与数据分析
dundunmm
数据挖掘数据挖掘数据分析人工智能
数据挖掘和数据分析是两个密切相关但有所区别的领域,它们都涉及从数据中提取有价值的信息,但在目标、方法和技术上有所不同。数据挖掘vs.数据分析特征数据挖掘数据分析目标从大数据中自动发现知识和模式通过系统分析数据,得出有意义的结论重点数据模式的自动发现、预测模型的构建数据理解、数据清洗、数据总结、假设验证方法机器学习、聚类、回归、关联规则、深度学习等统计学方法、数据可视化、数据清理、假设检验等应用实时
- An Introduction to Statistical Learning with Applicatio
AI天才研究院
Python实战DeepSeekR1&大数据AI人工智能大模型大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介1.1定义统计学习(statisticallearning)是一门研究如何从数据中提取知识并应用于预测、决策或其他目的的一门学科。它是机器学习、数据挖掘、计算机视觉等领域的一个分支,是当前热门的AI方向。1.2特点数据驱动:统计学习倾向于采用结构化的数据——如表格或矩阵形式——作为输入;假设空间少:统计学习通常只考虑一种假设空间,即概率模型或概率分布;模型复杂性
- 【C++】双指针算法
星霜旅人
C++c++算法
我们还有更长的路要走,不过没关系,道路就是生活。前言这是我自己学习蓝桥杯算法的第一篇博客总结。后期我会继续把蓝桥杯算法学习笔记开源至博客上。技巧1.双指针算法,但实际上是利用数组下标来充当指针,并不是直接使用指针。2.cur指针(current),扫描遍历指针,左边是已经扫描遍历的部分,中间及右边是还未扫描遍历的部分。3.dest指针(destination),分隔指针,左边是已经排好的序的部分,
- Python学习笔记——(二)循环结构,列表部分(切片,增删改查)
c田野
python学习笔记
1.循环的else子句【重点】作用:当循环正常结束(未被break中断)时执行典型场景:检测循环是否完整执行(如搜索元素未找到时触发)#示例:查找列表中是否存在偶数nums=[1,3,5,7]fornuminnums:ifnum%2==0:print("找到偶数")breakelse:print("未找到偶数")#会执行2.循环嵌套规则:外层循环执行一次,内层循环执行全部示例:打印九九乘法表for
- DiNN学习笔记1-理论部分
瓜皮37
同态加密密码学信息安全神经网络
DiNN学习笔记1-理论部分背景知识机器学习即服务MLaaS中的全同态加密神经网络Fhe-DiNN中的默认设定Fhe-DiNN方案神经元中的计算离散神经网络DiNN评估步骤自举的引入激活函数的同态评估对TFHE的改进明文的打包密钥转换的前置动态变化的消息空间优化盲旋步骤DiNN方案的整体流程参考资料背景知识机器学习即服务机器学习即服务(MachineLearningasaService,MLaaS
- 嵌入式学习笔记-卡尔曼滤波,PID,MicroPython
tt555555555555
面经嵌入式学习笔记学习笔记嵌入式
文章目录卡尔曼滤波卡尔曼滤波的核心思想卡尔曼滤波的数学模型1.状态转移模型(预测系统状态)2.观测模型(预测测量值)卡尔曼滤波的五个关键步骤1.预测状态2.预测误差协方差3.计算卡尔曼增益4.更新状态5.更新误差协方差卡尔曼滤波算法步骤总结代码实现(Python示例)PID调节总结MicroPython示例代码:控制LED灯并连接WiFi1.硬件准备2.连接方式3.示例代码代码说明开发环境搭建今天
- 大模型算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
介绍:大模型算法工程师是指在开发和部署复杂的机器学习模型、深度学习模型或其他大规模模型的专业人员。他们的主要职责和技能要求包括:职责:设计、开发和优化大规模机器学习或深度学习模型,解决复杂的业务问题。负责整个模型开发生命周期,包括数据清洗、特征工程、模型选择、训练和部署。与数据科学家、工程团队和产品团队合作,理解业务需求并将算法转化为实际产品。对模型性能进行评估和优化,确保模型的准确性、效率和可扩
- 机器学习——KNN算法实战—手写数字识别
巷955
机器学习算法人工智能
原理简述:KNN算法是机器学习中的一种基础的分类回归算法,选择距离自己最近的几条数据,依据最邻近的数据性质来估测自身的性质。下面我们开始实战,制作手写数字识别模型:一、cv2创建模型1、导入相关的库,这里我们用numpy和cv2两个库importnumpyasnpimportcv22、导入数据,并转化灰度图像img=cv2.imread('digits.png')gray=cv2.cvtColor
- AI大模型知识图谱和学习路线!
hhaiming_
人工智能知识图谱学习
23年AI大模型技术狂飙一年后,24年AI大模型的应用已经在爆发,因此掌握好AI大模型的应用开发技术就变成如此重要,那么如何才能更好地掌握呢?一份AI大模型详细的知识图谱和学习路线就变得非常重要!一、大模型全套的学习路线学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳
- Unity学习笔记之——ugui的性能优化
Summer_3416
unity学习笔记
在Unity中UI优化的核心问题就是重绘和批处理之间的平衡一、Canvas优化要点1.优化原因:(1)Unity为了性能优化,会合并Canvas下的所有元素;(2)如果把所有面板放到一个Canvas下,会造成重绘Redraw(反复绘制);下面列出了Unity中导致Canvas变脏的地方:·设置顶点脏——SetVerticesDirty,如RectTransform、Image中各种参数修改等;·设
- 数据清洗与统计分析原理与代码实战案例讲解
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《数据清洗与统计分析原理与代码实战案例讲解》关键词:数据清洗、统计分析、Python、R语言、数据预处理、数据分析、机器学习、大数据摘要:本文将深入探讨数据清洗与统计分析的原理,并通过丰富的实战案例展示如何在实际项目中应用这些技术。我们将详细讲解数据清洗的基本概念、流程和方法,以及统计分析的各种技术和应用。通过本文的学习,您将掌握数据清洗与统计分析的核心技能,提升数据处理和分析的能力,为后续的数据
- 机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例
Mostcow
数据分析Python机器学习随机森林回归大数据
机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):任务类型:随机森林回归主要用于回归任务。在回归任务中,算法试图预测一个连续的数值输出,而不是一个离散的类别。输出:随机森林回归的输出是一个连续的数值,表示输入数据的预测结果。算法原理:随机森林回归同样基于决策树,但在回归任务中,每个决策树的
- 机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例
Mostcow
Python数据分析机器学习scikit-learn随机森林回归算法
机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):随机森林是一种集成学习方法,它通过构建多个决策树来进行预测。它对于处理大量特征、非线性关系和避免过拟合都有一定的优势。在Python中,你可以使用Scikit-learn库中的RandomForestRegressor来实现。随机森林回归作为
- 矩阵理论与应用:矩阵范数
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
矩阵理论与应用:矩阵范数1.背景介绍1.1问题的由来矩阵范数在数学、工程、物理以及计算机科学等多个领域都有着广泛的应用。它提供了一种衡量矩阵大小或者矩阵变换的影响程度的方法。矩阵范数的概念对于理解矩阵的性质、数值稳定性、以及在机器学习和信号处理中的矩阵操作至关重要。例如,在数值线性代数中,矩阵范数用于评估算法的收敛性、误差估计和稳定性。在信号处理中,它可以用来评估信号的失真程度或者噪声的影响。1.
- 聚类分析tensorflow实例_新手必看的机器学习算法集锦(聚类篇)
道酝欣赏
继上一篇《机器学习算法之分类》中大致梳理了一遍在机器学习中常用的分类算法,类似的,这一姊妹篇中将会梳理一遍机器学习中的聚类算法,最后也会拓展一些其他无监督学习的方法供了解学习。1.机器学习机器学习是近20多年兴起的一门多领域交叉学科,它涉及到概率论、统计学、计算机科学以及软件工程等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类能从数据中自动分析获得规律
- .env文件是什么?如何使用?哪些需要注意的?一文全部搞定
万山y
网络
.env文件学习笔记什么是.env文件.env文件是一个配置文件,用于存储环境变量。主要用途:存储敏感信息(数据库连接信息、API密钥、密码等)环境配置(开发/生产环境标识、端口号等).env文件命名约定标准命名方式默认名称:.env(推荐)最通用的命名方式被所有工具和框架默认支持无需额外配置环境区分:.env.{environment}.env.development.env.productio
- 【深度学习·命运-27】NAS四部曲end-NASNet
华东算法王
深度学习·命运深度学习人工智能
NASNet(NeuralArchitectureSearchNetwork)是由GoogleBrain团队提出的另一种神经架构搜索(NAS)方法,它通过自动化搜索神经网络的结构,找到了具有竞争力的神经网络架构,尤其在计算机视觉任务(如图像分类)中表现非常优秀。NASNet是基于进化算法的架构搜索方法,与其他NAS方法相比,它具有更高的效率,并且能够生成更加优化的网络架构。1.NASNet的背景与
- 2024 最新计算机视觉学习路线(入门篇)_计算机视觉课程主线
m0_60721823
计算机视觉学习人工智能
Python是机器学习项目中最流行的编程语言之一,因为与Java和C++等其他编程语言相比,它简单易读。Python附带了许多可以加快开发速度的库,其中一些重要的库是OpenCV、TensorFlow、PyTorch等,它们专门用于图像处理相关任务。本文旨在向初学者介绍这一领域,为他们提供有关涉及图像的机器学习应用程序背后概念的基本知识,并从高层次的角度深入了解这些库如何在底层协同工作,以便他们在
- eNSP中AR2220、AR201、AR1220、AR2240、AR3260、Router、NE40E、NE5000E、NE9000、CX路由器学习笔记
learning-striving
eNSP笔记eNSP路由器路由器接口VRP
eNSP中常见华为路由器型号的接口特性详解及横向对比,重点关注接口类型、扩展能力和适用场景:缩写解释:LPU:LineProcessingUnit(线路处理单元)SPU:ServiceProcessingUnit(业务处理单元)PoE:PoweroverEthernet(以太网供电)GE:GigabitEthernet(千兆以太网)FE:FastEthernet(快速以太网)SFP:SmallFo
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY NODEXY@2014.8.12
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa